Довжина сторони основи правильної чотирикутної піраміди дорівнює 6 см, бічне ребро утворює з висотою піраміди 60°. знайдіть градусну міру двогранного кута при ребрі основи
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Відповідь:
70см
Пояснення:
№76.
Необхідне знання про те, що висота в рівнобедренному трикутнику , що проведена до основи є медианою. Тобто DO=OF і відповідно DF=2DO.
P(DEO)=DE+EO+DO;
DE+8+DO= 43
DE+DO=43-8;
DE+DO=35(см).
P(DEF)=DE+EF+DF=2DE+2DO=2(DE+DO)=35*2=70(см)
104. Міра другого кута 180°-50°=130°
109.
а) нехай ∠1=4х, ∠2=5х
4х+5х=180°;
9х=180°;
х=180°:9=20°
∠1=4*20°=80°
∠2=5*20°=100°
Відповідь: 80° , 100°
б) нехай ∠1=3х, ∠2=2х
3х+2х=180°;
5х=180°;
х=180°:5;
х=36°
∠1=3*36°=108°
∠2=2*36°=72°
Відповідь: 108° , 72°
113. Вертикальні кути- рівні. Суміжні в сумі дають 180°.
даний кут 10° 50° 60° 90° 120° 170°
вертикальний 10° 50° 60° 90° 120° 170°
суміжний 170° 130° 120° 90° 60° 10°