1) рассмотрим треугольник ADB: так как медиана и есть высота, то треугольник равнобедренный (теорема) , т.е. BD=AD, углы ABD и DAB равны.
2) рассмотрим треугольника ADC. AD=DC, значит треугольник тоже равнобедренный, а углы DAC и DCA равны.
3) пусть меньший угол треугольника ABC =x. Тогда второй угол = 2х. Угол A состоит из суммы углов B и C , очевидно,что меньший угол или B, или C,угол A не равен х. Также он не может быть равен 2х, потому что это значило бы, что угол B=углу C, но треугольник ABC не равнобедренный. Тогда угол A= B+C=х+2х=3х.
1) рассмотрим треугольник ADB: так как медиана и есть высота, то треугольник равнобедренный (теорема) , т.е. BD=AD, углы ABD и DAB равны.
2) рассмотрим треугольника ADC. AD=DC, значит треугольник тоже равнобедренный, а углы DAC и DCA равны.
3) пусть меньший угол треугольника ABC =x. Тогда второй угол = 2х. Угол A состоит из суммы углов B и C , очевидно,что меньший угол или B, или C,угол A не равен х. Также он не может быть равен 2х, потому что это значило бы, что угол B=углу C, но треугольник ABC не равнобедренный. Тогда угол A= B+C=х+2х=3х.
сумма всех углов=180°,тогда
A+B+C=х+2х+3х=180, отсюда х=30°
ответ: 30°
НАЙТИ: АD
_________________________
РЕШЕНИЕ:
Опустим на отрезок АD две высоты ВЕ и CF:
1) Рассмотрим ∆ ВАЕ ( угол ВЕА = 90° ):
Катет, лежащий против угла в 30°, равен половине гипотенузы =>
ВЕ = 1/2 × АВ = 1/2 × 6 = 3 см
ВЕ = СF = 3 см
По теореме Пифагора:
АЕ² = АВ² - ВЕ² = 6² - 3² = 36 - 9 = 27
АЕ = 3√3 см
2 ) Рассмотрим ∆ СDF ( угол CFD = 90° ) :
По теореме Пифагора:
FD² = CD² - CF² = 5² - 3² = 25 - 9 = 16
FD = 4
AB = EF = 10 см
АD = AE + EF + FD = 3√3 + 10 + 4 = 14 + 3√3 см
ОТВЕТ: 14 + 3√3 см