1) Через две точки можно провести только одну прямую (аксиома).
При расположении точек важно, чтобы ни одни три не располагались на одной прямой.
Как вариант построения:
Наложите два треугольника один на другой так, чтобы они не имели общих вершин и их стороны пересекались. Вершины треугольников можно попарно соединять в разных комбинациях (см. рисунок в приложении)
2) Через любые две точки проходит одна и только одна прямая. (Аксиома).
Пересекающиеся прямые имеют только одну общую точку. В противном случае , если бы они имели две общие точки, то через эти точки проходили бы две различные прямые, что противоречит аксиоме.
Отсюда следуют варианты:
а) все четыре прямые пересекают данную в одной точке.
б) прямые пересекают её в двух точках ( по две в каждой)
в) в трёх точках ( две из них пересекают прямую в одной точке)
г) в четырех точках -каждая прямая пересекает данную в отдельной точке.
При пересечении четырех прямых с данной может образоваться от одной до четырех точек пересечения.
Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной. В нашем случае из одной точки А, лежащей на большей окружности проведена касательная АМ к меньшей окружности и секущая АВ, проходящая через общий центр О (окружности концентрические). Точка касания М делит хорду пополам значит АМ=10см. Тогда 10² = (R+r)*(R-r). Или 100=R^2-r^2. Но r = (2/3)*R. Подставляем и имеем 100=(5/9)*R^2. Отсюда R = 6√5см, а r = 4√5см.
Или так: из прямоугольного треугольника ОМА по Пифагору имеем: ОА^2-ОМ^2=АМ^2 или R^2-r^2=100 или (5/9)*R=100 Отсюда R=6√5см. r=4√5 см.
1) Через две точки можно провести только одну прямую (аксиома).
При расположении точек важно, чтобы ни одни три не располагались на одной прямой.
Как вариант построения:
Наложите два треугольника один на другой так, чтобы они не имели общих вершин и их стороны пересекались. Вершины треугольников можно попарно соединять в разных комбинациях (см. рисунок в приложении)
2) Через любые две точки проходит одна и только одна прямая. (Аксиома).
Пересекающиеся прямые имеют только одну общую точку. В противном случае , если бы они имели две общие точки, то через эти точки проходили бы две различные прямые, что противоречит аксиоме.
Отсюда следуют варианты:
а) все четыре прямые пересекают данную в одной точке.
б) прямые пересекают её в двух точках ( по две в каждой)
в) в трёх точках ( две из них пересекают прямую в одной точке)
г) в четырех точках -каждая прямая пересекает данную в отдельной точке.
При пересечении четырех прямых с данной может образоваться от одной до четырех точек пересечения.
В нашем случае из одной точки А, лежащей на большей окружности проведена касательная АМ к меньшей окружности и секущая АВ, проходящая через общий центр О (окружности концентрические). Точка касания М делит хорду пополам значит АМ=10см. Тогда 10² = (R+r)*(R-r). Или 100=R^2-r^2. Но r = (2/3)*R. Подставляем и имеем 100=(5/9)*R^2.
Отсюда R = 6√5см, а r = 4√5см.
Или так: из прямоугольного треугольника ОМА по Пифагору имеем:
ОА^2-ОМ^2=АМ^2 или
R^2-r^2=100 или
(5/9)*R=100
Отсюда R=6√5см. r=4√5 см.