2) Треугольники АОВ и АО₁В - равнобедренные, так как в каждом две стороны равны как радиусы одной и той же окружности. 1) Если провести к АВ высоту ОМ из О, то ОМ будет для равнобедренного треугольника АОВ и медианой и биссектрисой.. Высота из О₁ в равнобедренном треугольнике АО₁В, проведенная к тому же отрезку АВ, тоже - медиана и биссектриса. Так как М - середина одного и того же отрезка и углы при ней прямые, то М лежит на ОО₁ Отсюда Угол АОМ=углу ВОМ, угол АО₁М=углу ВО₁М. ОО₁- общая сторона этих треугольников. По второму признаку равенства треугольников треугольники равны, если у них равны два угла и сторона между ними. ⇒ Δ АО₁В=Δ АОВ ч.т.д.
1) Если провести к АВ высоту ОМ из О, то ОМ будет для равнобедренного треугольника АОВ и медианой и биссектрисой..
Высота из О₁ в равнобедренном треугольнике АО₁В, проведенная к тому же отрезку АВ, тоже - медиана и биссектриса. Так как М - середина одного и того же отрезка и углы при ней прямые, то М лежит на ОО₁
Отсюда
Угол АОМ=углу ВОМ,
угол АО₁М=углу ВО₁М.
ОО₁- общая сторона этих треугольников.
По второму признаку равенства треугольников треугольники равны, если у них равны два угла и сторона между ними. ⇒ Δ АО₁В=Δ АОВ ч.т.д.
Объяснение:
1)в<с отнимем от обеих частей неравенства 7,9
в−7,9<c−7,9 - неравенство ВЕРНО.
2)в<с умножим обе части неравенства на -7,9 (знак повернётся)
−7,9в>−7,9c - неравенство ВЕРНО.
3)в<c умножим обе части неравенства на 7,9
7,9в<7,9c - неравенство ВЕРНО.
4)в<c умножим обе части неравенства на -1 (знак повернётся)
-в>-с прибавим к обеим частям неравенства 7,9
7,9-в>7,9-с - неравенство НЕВЕРНО.
5)в<c прибавим к обеим частям неравенства 7,9
в+7,9<c+7,9 - неравенство ВЕРНО.
Если Вы учитесь в 6 классе, думаю, достаточно будет ответов "верно-неверно", а если в 9 классе, то опишите каждый шаг.