если сторона квадрата =а, то радиус окружности = (a√10) /4
Объяснение:
пусть сторона квадрата = а
∆ВЕF — ∆, вписанный в заданную окружность. → Центр окружности находим так: через середины сторон EF и ВЕ проводим перпендикулярные им прямые, точка О ( пересечение этих прямых) — центр окружности, радиус (R) которой требуется определить.По теореме синусов: ВЕ/sin(<F) = EF/sin(<B) = BF/sin(<E) = 2*R → R = BF/2sin(<BEF)По теореме Пифагора: BF^2=СF^2+BC^2 , так как F - середина СD, то СF=a/2, ВС=а → BF = √(a² + a²/4)=√(5a²/4)=(a√5)/2EF||BC и прямая EB — секущая → < ABD + <BEF =180°, <ABD=45°(так как ВD-диагональ квадрата) → <ВЕF=180°-45°=135°R = BF/2sin(<BEF) =( (a√5)/2 ) / sin(135°)=
угол прямоугольника равен 90°
диагональю он делится в отношении 4: 5, т.е. на углы
90: (4+5)*4=40°
и 90: (4+5)*5=50°
диагонали прямоугольника равны и точкой пересечения со сторонами прямоугольника образуют равнобедренные треугольники, сумма углов которых 180°
углы треугольника с боковой стороной равны 40°,40°,100°
углы треугольника, образованного диагоналями с основанием, равны
50°,50°,80°.
ответ: диагонали прямоугольника при пересечении образуют углы 100°и 80°
если сторона квадрата =а, то радиус окружности = (a√10) /4
Объяснение:
пусть сторона квадрата = а
∆ВЕF — ∆, вписанный в заданную окружность. → Центр окружности находим так: через середины сторон EF и ВЕ проводим перпендикулярные им прямые, точка О ( пересечение этих прямых) — центр окружности, радиус (R) которой требуется определить.По теореме синусов: ВЕ/sin(<F) = EF/sin(<B) = BF/sin(<E) = 2*R → R = BF/2sin(<BEF)По теореме Пифагора: BF^2=СF^2+BC^2 , так как F - середина СD, то СF=a/2, ВС=а → BF = √(a² + a²/4)=√(5a²/4)=(a√5)/2EF||BC и прямая EB — секущая → < ABD + <BEF =180°, <ABD=45°(так как ВD-диагональ квадрата) → <ВЕF=180°-45°=135°R = BF/2sin(<BEF) =( (a√5)/2 ) / sin(135°)== ((a√5)/2) / ((√2)/2 )= (a√5*√2) / (2*2) = (a√10) /4