Если двугранные углы при основании пирамиды равны, то высота пирамиды проецируется в центр окружности, вписанной в основание - точку О, и высоты боковых граней равны.
Сначала выразим в основании все нужные величины:
АН : ВН = ctg (α/2) ⇒ AH = BH · ctg(α/2) = 
BH : AB = sin(α/2) ⇒ AB = BH / sin(α/2) = 
Pabc = 2AB + BC = a/sin(α/2) + a
Sabc = 1/2 · BC · AH = 1/2 · a · a/2 · ctg(α/2) = a²/4 · ctg(α/2)
r = 2Sabc / Pabc
r = 2· a²/4 · ctg(α/2) / (a/sin(α/2) + a) = a·cos(α/2) / (2 + 2sin(α/2))
ΔSOH:
OH : SH = cosβ ⇒ SH = OH / cosβ = r / cosβ = 2Sabc / (Pabc · cosβ)
Теперь площадь полной поверхности:
S = Sбок + Sосн = 1/2 · Pabc · SH + Sabc
S = 1/2 · Pabc · 2Sabc / (Pabc · cosβ) + Sabc
S = Sabc/cosβ + Sabc = Sabc · (1/cosβ + 1)
S = a²/4 · ctg(α/2) · (1/cosβ + 1)
Вообще, если боковые грани наклонены под одним углом к основанию
чтобы найти периметр,надо найти сторону. находим по теореме Пифагора:
√(1/2*6)²+(1/2*8)²=5
Р=5*4=20 см
4. При пересечении двух хорд произведение длин отрезков, образованных точкой пересечения, одной хорды, равно произведению длин отрезков другой хорды.
АМ * ВМ = СМ * ДМ.
Пусть длина отрезка СМ = Х см, тогда ДМ = (23 – Х) см.
12 * 10 = Х * (23 – Х).
120 = 23 * Х – Х2.
Х2 – 23 * Х + 120 = 0.
Решим квадратное уравнение.
Х1 = 8 см.
Х2 = 15 см.
Если СМ = 8 см, ДМ = 15 см.
Если СМ = 15 см, ДМ = 8 см.
ответ: Длины отрезков равны 8 и 15 см
5. если в окружность вписан прямоугольный треугольник, то его гипотенуза-это диагональ этой окружности, внашем случае она равна 6,5*2=13. по теореме пифагора найдем неизветсный катет, он равен:
корень из гипотенуза квадрате минус другой катет в квадрате, это равно 13*13-5*5=12
площадь треугольника это половина произведения катетов, то есть 0,5*5*12=30
Если двугранные углы при основании пирамиды равны, то высота пирамиды проецируется в центр окружности, вписанной в основание - точку О, и высоты боковых граней равны.
Сначала выразим в основании все нужные величины:
АН : ВН = ctg (α/2) ⇒ AH = BH · ctg(α/2) = 
BH : AB = sin(α/2) ⇒ AB = BH / sin(α/2) = 
Pabc = 2AB + BC = a/sin(α/2) + a
Sabc = 1/2 · BC · AH = 1/2 · a · a/2 · ctg(α/2) = a²/4 · ctg(α/2)
r = 2Sabc / Pabc
r = 2· a²/4 · ctg(α/2) / (a/sin(α/2) + a) = a·cos(α/2) / (2 + 2sin(α/2))
ΔSOH:
OH : SH = cosβ ⇒ SH = OH / cosβ = r / cosβ = 2Sabc / (Pabc · cosβ)
Теперь площадь полной поверхности:
S = Sбок + Sосн = 1/2 · Pabc · SH + Sabc
S = 1/2 · Pabc · 2Sabc / (Pabc · cosβ) + Sabc
S = Sabc/cosβ + Sabc = Sabc · (1/cosβ + 1)
S = a²/4 · ctg(α/2) · (1/cosβ + 1)
Вообще, если боковые грани наклонены под одним углом к основанию
Sосн /Sбок = cosβ
Высота пирамиды:
ΔSOH:
SO / r = tgβ
SO = r · tgβ = a·cos(α/2) · tgβ / (2 + 2sin(α/2))
2. S=1/2*6*8=24 см²
чтобы найти периметр,надо найти сторону. находим по теореме Пифагора:
√(1/2*6)²+(1/2*8)²=5
Р=5*4=20 см
4. При пересечении двух хорд произведение длин отрезков, образованных точкой пересечения, одной хорды, равно произведению длин отрезков другой хорды.
АМ * ВМ = СМ * ДМ.
Пусть длина отрезка СМ = Х см, тогда ДМ = (23 – Х) см.
12 * 10 = Х * (23 – Х).
120 = 23 * Х – Х2.
Х2 – 23 * Х + 120 = 0.
Решим квадратное уравнение.
Х1 = 8 см.
Х2 = 15 см.
Если СМ = 8 см, ДМ = 15 см.
Если СМ = 15 см, ДМ = 8 см.
ответ: Длины отрезков равны 8 и 15 см
5. если в окружность вписан прямоугольный треугольник, то его гипотенуза-это диагональ этой окружности, внашем случае она равна 6,5*2=13. по теореме пифагора найдем неизветсный катет, он равен:
корень из гипотенуза квадрате минус другой катет в квадрате, это равно 13*13-5*5=12
площадь треугольника это половина произведения катетов, то есть 0,5*5*12=30
ответ: 30
Объяснение:
1 фото - 1 номер
2 фото - 3 номер