Дві площини перетинаються під кутом 30°. точка а. яка лежить в одній площині, віддалена від другої площині на відстані а. знайдіть відстань від цієї точки до прямої перетину площин
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
1) • тр. АВС - прямоугольный, угол С = 90°
• Применим теорему Пифагора:
Квадрат гипотенузы прямоугольного треугольника равен сумме квадртов катетов.
ОТВЕТ: 5
2) • тр. MNK - прямоугольный, угол N = 90°
• По теореме Пифагора:
ОТВЕТ: 3\/17
5) • тр. АВС - равнобедренный, АВ = ВС ,
BD - высота, опущенная на сторону АС
• По свойству равнобедренного треугольника:
Высота, проведённая в равнобедренном треугольнике к основанию, является и медианой, и биссектрисой.
Значит, AD = DC = ( 1/2 ) • AC = ( 1/2 ) • 16 = 8
• Рассмотрим тр. BDC (угол BDC = 90°):
По теореме Пифагора:
ОТВЕТ: 15
6) • тр. RMN - правильный, то есть равносторонний треугольник => RN = NM = RM = 6
• Любая высота, проведёная в равностороннем треугольнике, является и медианой, и биссектрисой:
NK = KM = ( 1/2 ) • NM = ( 1/2 ) • 6 = 3
• Рассмотрим тр. RNK (угол RKN = 90°):
По теореме Пифагора:
ОТВЕТ: 3\/3 .
douwdek0 и 7 других пользователей посчитали ответ полезным!
5
5,0
(3 оценки)
Войди чтобы добавить комментарий
ответ
3,0/5
1
Удачник66
главный мозг
14.3 тыс. ответов
18 млн пользователей, получивших
1) x^2 = 3^2 + 4^2 = 9 + 16 = 25; x = 5
2) x^2 = 13^2 - 4^2 = 169 - 16 = 155; x = V155
Здесь V это корень, просто у меня в телефоне значка корня нет.
Если бы катет был 5, то х = 12.
5) x^2 = 17^2 - (16/2)^2 = 17^2 - 8^2 = 289 - 64 = 225; x = 15
6) x^2 = 6^2 - (6/2)^2 = 6^2 - 3^2 = 36 - 9 = 27; x = V27 = 3*V3
cliy4h и 2 д