Я не знаю как тебе нужно оформить, но начни доказательство с того, что диаметр - это хорда, проходящая через центр окружности.
1). Диаметры равны и пересекаются в середине (т. е. точкой пересечения делятся пополам). Из этого следует, что:
АО=ОС=ВО=OD (т. к. это радиусы окружности).
2). Пусть чентр окружности - точка О.
3). Рассмотрим треугольники АОС и BOD.
Они равны по первому признаку равенства треугольников (по двум сторонами и углу между ними).
Угол АОС равен углу BOD (т. к. они вертикальные)
Поэтому ВD и АС равны. И там дальше продолжай доказывать, исходя из того, что написано...
Найдите длину окружности , описанной около:
1)прямоугольника, меньшая сторона которого равна 8 см, а угол между диагоналями равен α;
2)правильного треугольника, площадь которого равна 48√3 см²
1) R = AC/2 * * * R =d/2 = AC/2 =AO * * *
Из ΔABC: AC =2*AO =AB /sin(α/2) =8/sin(α/2)
R = 4/sin(α/2)
2) a/sinα =2R ⇒ R = a/2sinα =a/2sin60° =a/(2*√3 /2) = a /√3 || (a√3)/3 ||
* * * S = (1/2)*absinC * * * S = (1/2)*a*a*sin60° =(a²√3) / 4
48√3 =(a²√3) / 4 ⇔a²/ 4 = 48 ⇔a² =4*48 = 4*16*3 ⇒ a=8√3
R = a /√3 = 8√3/√3 =8
Я не знаю как тебе нужно оформить, но начни доказательство с того, что диаметр - это хорда, проходящая через центр окружности.
1). Диаметры равны и пересекаются в середине (т. е. точкой пересечения делятся пополам). Из этого следует, что:
АО=ОС=ВО=OD (т. к. это радиусы окружности).
2). Пусть чентр окружности - точка О.
3). Рассмотрим треугольники АОС и BOD.
Они равны по первому признаку равенства треугольников (по двум сторонами и углу между ними).
Угол АОС равен углу BOD (т. к. они вертикальные)
Поэтому ВD и АС равны. И там дальше продолжай доказывать, исходя из того, что написано...
Найдите длину окружности , описанной около:
1)прямоугольника, меньшая сторона которого равна 8 см, а угол между диагоналями равен α;
2)правильного треугольника, площадь которого равна 48√3 см²
1) R = AC/2 * * * R =d/2 = AC/2 =AO * * *
Из ΔABC: AC =2*AO =AB /sin(α/2) =8/sin(α/2)
R = 4/sin(α/2)
2) a/sinα =2R ⇒ R = a/2sinα =a/2sin60° =a/(2*√3 /2) = a /√3 || (a√3)/3 ||
* * * S = (1/2)*absinC * * * S = (1/2)*a*a*sin60° =(a²√3) / 4
48√3 =(a²√3) / 4 ⇔a²/ 4 = 48 ⇔a² =4*48 = 4*16*3 ⇒ a=8√3
R = a /√3 = 8√3/√3 =8