Найдем угол ВАС: 180- (30+45) = 180 - 75 = 105 градусов Можно провести высоту к стороне ВС, тогда высота AD будет перпендикулярна стороне BC и угол BAD = 180 - (90+45) = 180 - 135 = 45 градусов. Следует, что BD=AD . Пусть сторона - х, тогда BD=AD=x x^2 + x^2 = 16 (по теореме Пифагора: квадрат гипотенузы, т.е. AB, равен сумме длин квадратов катетов, т.е. AD и BD) 2х^2 = 16, x^2 = 8, x= 2 корня из 2
По теореме длины стороны треугольника напротив угла в 30 градусов: AC=2AD= 2* 2 корня из 2 = 4 корня из 2 ответ: 4 корня из 2
Задачу можно решить с простейшим рисунком, советую сделать его. Если два отрезка пересекаются в их общей середине, значит, каждый из них точкой пересечения делится пополам. Обозначим эту точку буквой М. Соединив свободные концы А иС, В и D отрезков, получим 2 равных теугольника
СМА и ВМD. Они равны по первому признаку равенства треугольников ( если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого, то эти треугольники равны).
У этих треугольников равны стороны ( по половине отрезков в каждом) и вертикальный угол. Отсюда следует, что у них равны углы, лежащие против равных сторон.Равные углы при С и D являются в то же время накрестлежащими при пересечении двух прямых АС и ВD третьей (СD). Поэтому прямые АС и ВД параллельны.
Можно провести высоту к стороне ВС, тогда высота AD будет перпендикулярна стороне BC и угол BAD = 180 - (90+45) = 180 - 135 = 45 градусов. Следует, что BD=AD . Пусть сторона - х, тогда BD=AD=x
x^2 + x^2 = 16 (по теореме Пифагора: квадрат гипотенузы, т.е. AB, равен сумме длин квадратов катетов, т.е. AD и BD)
2х^2 = 16,
x^2 = 8,
x= 2 корня из 2
По теореме длины стороны треугольника напротив угла в 30 градусов: AC=2AD= 2* 2 корня из 2 = 4 корня из 2
ответ: 4 корня из 2
Задачу можно решить с простейшим рисунком, советую сделать его.
Если два отрезка пересекаются в их общей середине, значит, каждый из них точкой пересечения делится пополам. Обозначим эту точку буквой М.
Соединив свободные концы А иС, В и D отрезков, получим 2 равных теугольника
СМА и ВМD. Они равны по первому признаку равенства треугольников ( если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого, то эти треугольники равны).
У этих треугольников равны стороны ( по половине отрезков в каждом) и вертикальный угол. Отсюда следует, что у них равны углы, лежащие против равных сторон.Равные углы при С и D являются в то же время накрестлежащими при пересечении двух прямых АС и ВD третьей (СD). Поэтому прямые АС и ВД параллельны.