В правильной пирамиде высота падает в центр основания, то есть в центр правильного многоугольника. Правильный четырёхугольник это квадрат, а его центр находится на пересечении диагоналей. Боковые грани правильной пирамиды это равнобедренные треугольники, которые равны. Апофема это высота боковой грани. В квадрате все стороны равны, диагонали равны и делятся точкой пересечения пополам.
Пусть P∈AD и MP⊥AD, тогда MP=17см и AP=PD т.к. в равнобедренном Δ высота является и медианой.
Пусть H∈(ABC) и MH⊥(ABC), тогда AC∩BD=H.
ΔMHP - прямоугольный, найдём неизвестный катет.
см.
ΔAHD - равнобедренный, поэтому PH не только медиана, но и высота.
ΔHPD - прямоугольный, ∠HDP=45° т.к. диагонали квадрата являются и биссектрисами, значит HP=PD=8см - равны как катеты, прямоугольного Δ с острым углом в 45°.
AD=2·PD=2·8см=16см.
Площадь квадрата можно найти через сторону, а площадь равнобедренного треугольника через сторону и высоту опущенную на эту сторону.
Сделаем построение по условию прямые A1B1 || AB параллельные и отсекают на сторонах угла АСВ пропорциональные отрезки, значит AC~A1C и BC ~ B1C в угол АСВ общий Треугольники ABC ~ A1B1C подобные с коэффициентом подобия k=5/7 , так как стороны A1B2: AB (Основания трапеции) относятся 5:7. Тогда отношение площадей треугольников S(A1B1C) / S(ABC) = k^2 = (5/7)^2 = 25/49 по условию образуется треугольник АВС , площадью 49 S(A1B1C) / S(ABC) = 25/49 S(A1B1C) / 49 = 25/49 S(A1B1C) = 25 Площадь трапеции S(AA1B1B)=S(ABC)-S(A1B1C)=49-25=24 ответ Площадь трапеции = 24
В правильной пирамиде высота падает в центр основания, то есть в центр правильного многоугольника. Правильный четырёхугольник это квадрат, а его центр находится на пересечении диагоналей. Боковые грани правильной пирамиды это равнобедренные треугольники, которые равны. Апофема это высота боковой грани. В квадрате все стороны равны, диагонали равны и делятся точкой пересечения пополам.
Пусть P∈AD и MP⊥AD, тогда MP=17см и AP=PD т.к. в равнобедренном Δ высота является и медианой.
Пусть H∈(ABC) и MH⊥(ABC), тогда AC∩BD=H.
ΔMHP - прямоугольный, найдём неизвестный катет.
см.
ΔAHD - равнобедренный, поэтому PH не только медиана, но и высота.
ΔHPD - прямоугольный, ∠HDP=45° т.к. диагонали квадрата являются и биссектрисами, значит HP=PD=8см - равны как катеты, прямоугольного Δ с острым углом в 45°.
AD=2·PD=2·8см=16см.
Площадь квадрата можно найти через сторону, а площадь равнобедренного треугольника через сторону и высоту опущенную на эту сторону.
S(ABCD) = AD²=16² см².
S(AMD) = MP·AD:2=17·16:2 см².
S(бок. пов.) = 4·S(AMD)=4·17·16:2 см²=2·17·16 см².
S(полн. пов.) = S(ABCD)+S(бок. пов.) = 16²см²+2·17·16 см² = 32·(8+17)см² = 8·4·25см²=800см².
ответ: 800см².
прямые A1B1 || AB параллельные и отсекают на сторонах угла АСВ
пропорциональные отрезки, значит AC~A1C и BC ~ B1C в угол АСВ
общий
Треугольники ABC ~ A1B1C подобные с коэффициентом подобия k=5/7 , так как стороны A1B2: AB (Основания трапеции) относятся 5:7.
Тогда отношение площадей треугольников
S(A1B1C) / S(ABC) = k^2 = (5/7)^2 = 25/49
по условию образуется треугольник АВС , площадью 49
S(A1B1C) / S(ABC) = 25/49
S(A1B1C) / 49 = 25/49
S(A1B1C) = 25
Площадь трапеции S(AA1B1B)=S(ABC)-S(A1B1C)=49-25=24
ответ
Площадь трапеции = 24