Геометрия 9 класс
Тема движение
1 вариант.
1 Построить фигуру, симметричную данному параллелограмму относительно прямой в.
2 Построить фигуру, симметричную данной трапеции относительно основания АВ.
3 Построить фигуру, симметричную данному правильному шестиугольнику относительно точки, являющейся точкой вписанного круга.
4 Построить фигуру, симметричную данному параллелограмму относительно середины боковой стороны СД.
5 Дан произвольный треугольник. С параллельного переноса на вектор а (точка, затем вправо 2 клетки вверх 3 клетки другая точка) построить фигуру.
6 Построить фигуру, полученную при повороте по часовой стрелке на 70° вокруг точки, не лежащей на данном четырехугольнике.
7 Построить фигуру, полученную при повороте против часовой стрелки на 40° вокруг вершины квадрата Д.
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2)
Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3)
Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100
Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒
5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000
а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4