Два равнобедренных триугольника имеют общую основу длиной 6 см. Кут между плоскостями треугольников равно 60°, а плоскость треугольников - 24 см^2 и 45 см^2. Найти расстояние между вершинами треугольников. Сколько решений имеет задача?
Признак равенства по гипотенузе и острому углу.Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по двум катетам.Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по катету и гипотенузе.Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по катету и острому углу.Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по двум катетам.Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и гипотенузе.Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и острому углу.Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
PQ параллельна BC
Получилось два подобных треугольника
ΔAPQ подобен ΔABC по трем углам:Угол BAC,угол APQ = ABC, угол AQP =ACB.Коэффициент подобия этих треугольников k = AP:(PB +AP) =
=3:(2 + 3) = 3:5
PQ = BC *k = 10 * 3:5 = 6 cм
2.Поскольку плоскость параллельна ВС, то прямая PQ параллельна ВС
PQ параллельна BC
Получилось два подобных треугольника
ΔAPQ подобен ΔABC по трем углам:угол BAC,угол APQ=ABC,
угол AQP = ACB.
коэффициент подобия этих треугольников К= PQ:BC = 1:4
АР = АВ *k = 16 * 1:4 = 4 см
Сорри за качество фотки.