Два равных угла имеют общую вершину, а биссектриса одного из них является продолжением биссектрисы другого. Докажите, что данные углы вертикальные. P.S. Оформить с рисунком, дано, доказать, доказательство.
Здесь доказана теорема о трех косинусах: Косинус угла между наклонной и прямой, лежащей в плоскости, равен произведению косинуса угла между наклонной и плоскостью на косинус угла между проекцией и этой прямой. cosα = cosβ · cosγ
Пусть дан отрезок АВ и неразвёрнутый угол CDE. Выполнить задание можно с транспортира и линейки — это тривиальный транспортиром определяем значение угла, строим биссектрису (половину угла), линейкой замеряем отрезок, откладываем на построенной биссектрисе, получаем искомую точку. А если под рукой только циркуль? Тогда эта задача решается значительно интереснее. Порядок действий при этом такой: a) сначала строим биссектрису — для этого cтроим окружность произвольного радиуса с центром в точке D, на пересечении с лучами DC и DE развёрнутого угла отмечаем точки F и G, тем же радиусом (не перестраивая циркуль) строим окружности (можно дуги) внутри угла CDE, на пересечении этих дуг отмечаем точку H, через которую строим луч DH, это и будет биссектрисой неразвёрнутого угла CDE; b) затем циркулем замеряем отрезок AB и откладываем его от точки D на полученной биссектрисе, получаем искомую точку K. (cм. рис.)
Проведем СН⊥AD, СН - проекция ВН на плоскость (ACD), значит
ВН⊥AD по теореме о трех перпендикулярах.
ΔВАС: ∠ВСА = 90°,
cos∠β = AC / AB
ΔBAH: ∠BHA = 90°,
cos∠α = AH / AB ⇒ AB = AH / cos∠α
ΔAHC: ∠AHC = 90°,
cos∠γ = AH / AC ⇒ AC = AH / cos∠γ
cos∠β = (AH / cos∠γ) / (AH / cos∠α) = cos∠α / cos∠γ
cos∠β = cos 60° / cos 30° = 1/2 / (√3/2) = 1/√3
∠BAC = arccos(1/√3)
Здесь доказана теорема о трех косинусах:
Косинус угла между наклонной и прямой, лежащей в плоскости, равен произведению косинуса угла между наклонной и плоскостью на косинус угла между проекцией и этой прямой.
cosα = cosβ · cosγ
Выполнить задание можно с транспортира и линейки — это тривиальный транспортиром определяем значение угла, строим биссектрису (половину угла), линейкой замеряем отрезок, откладываем на построенной биссектрисе, получаем искомую точку.
А если под рукой только циркуль? Тогда эта задача решается значительно интереснее. Порядок действий при этом такой:
a) сначала строим биссектрису — для этого cтроим окружность произвольного радиуса с центром в точке D, на пересечении с лучами DC и DE развёрнутого угла отмечаем точки F и G, тем же радиусом (не перестраивая циркуль) строим окружности (можно дуги) внутри угла CDE, на пересечении этих дуг отмечаем точку H, через которую строим луч DH, это и будет биссектрисой неразвёрнутого угла CDE;
b) затем циркулем замеряем отрезок AB и откладываем его от точки D на полученной биссектрисе, получаем искомую точку K. (cм. рис.)