Два трикутника симетричні одна одній щодо точки. Два кута
першого трикутника відповідно рівні 30º і 60º. Чи є другий трикутник
прямокутним?Два трикутника симетричні одна одній щодо точки. Два кута
першого трикутника відповідно рівні 30º і 60º. Чи є другий трикутник
прямокутним?
Заметим, что если провести из любой вершины высоту, то она будет и биссектрисой и медианой одновременно. Также точка пересечения медиан будет совпадать с точкой пересечения биссектрис и высот (так как в правильном треугольнике медианы биссектрисы и высоты, проведенные из одной вершины совпадают). А медианы делятся в точке пересечения в соотношении 2 к 1, начиная от вершины. Теперь отрезок медианы от точки пресечения медиан до вершины будет радиусом описанной окружности. А отрезок медианы от точки пересечения медиан до основания (стороны, к которой проведен) будет радиусом вписанной окружности. Значит половина длины радиуса описанной окружности равна длине радиуса вписанной окружности. То есть 8:2=4 см.
ответ: радиус вписанной окружности равен 4 см.
ед².
Объяснение:Обозначим данную пирамиду буквами .
ед.
Проведём высоту . Точка - центр - точка пересечения, медиан, высот и биссектрис треугольника.
Проведём апофему (апофема - это высота боковой грани пирамиды, проведённая из вершины пирамиды) к стороне основания пирамиды.
Т.к. данная пирамида - правильная, треугольная ⇒ основание пирамиды - правильный треугольник.
.
Проведём высоту в .
Т.к. - равносторонний ⇒ - высота, медиана, биссектриса.
Высота и апофема имеют общее основание, а именно точку , т.к. - медиана, а апофема делит пополам (по свойству).
.
Рассмотрим :
- прямоугольный, так как - высота.
Найдём высоту по теореме Пифагора:
ед.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Точка O - пересечение медиан и делит их в отношении 2 : 1, считая от вершины.
ед.
ед.
Рассмотрим :
- прямоугольный, так как - высота.
Если угол прямоугольного треугольника равен , то напротив лежащий катет равен произведению меньшего катета на .
ед.
Найдём апофему по теореме Пифагора:
ед.
====================================================
полн. поверх. = S основ. + S бок.поверх.
осн. = ед².
бок. поверх. = ( осн. ), где - апофема.
осн. ед.
⇒ бок. поверх. = ед².
⇒ полн. поверх. = ед².