Два участка земли огорожены заборами одинаковой длины. Первый участок имеет форму прямоугольника со сторонами 350 м и 280 м, а второй участок имеет форму квадрата.
Площадь какого участка больше?
Участка квадратной формы
Участка прямоугольной формы
На сколько квадратных метров больше?
ответ: на
Тогда сторона основания призмы (квадрата)
АD=DB1*Sinα=а*Sinα. Диагональ основания
ВD=а*Sinα√2. Высота призмы ВВ1=√(а²-2а²*Sin²α) или h=а√(1-2Sin²α).
Объем призмы равен Vп=So*h, или а³Sin²α√(1-2Sin²α).
При а=4 и Sin30° объем призмы равен
Vп=64*(1/4)*√2/2=8√2.
Объем описанного цилиндра равен So*h, где So=πR².
R=BD/2=а*Sinα*(√2/2). So=πа²*Sin²α*(1/2).
Объем цилиндра равен Vц=πа³*Sin²α*(1/2)*√(1-2Sin²α).
При а=4 и Sin30° объем призмы равен
Vц=π64*(1/4)*(1/2)*(√2/2)=π*4√2.
ответ: Vп=8√2. Vц=π*4√2.
Подобие следует из равенства углов при параллельных основаниях и общей вершине.
В подобных фигурах отношения сходственных элементов равны.
Отношение площадей подобных фигур равно квадрату коэффициента подобия их линейных размеров.
Высота пирамиды сечением делится в отношении 7:5.
Вся высота SO равна SH+HO=7+5=12-ти частям этого отношения, поэтому k=7/12, где 7 - части высоты отсеченной пирамиды.
Тогда
k²=49/144.
428/144 см² - содержание одной части отношения площадей.
Площадь сечения
428*49/144 см² =5243/36=145 ²³/₃₆ см²