Две окружности, расстояние между центрами которых равно 21, а радиусы равны 13 и 20, пересекаются в точках p и q. на меньшей из этих окружностей взята точка l так, что прямая lq касается большей окружности. найдите площадь треугольника lpq. решить, ! ) желательно с рисунком. 50 .
∪PQ' - дуга окружности c центром A
△APB=△AQB (по трем сторонам)
∠ABP=∠ABQ, ∠PAB=∠QAB
Угол между касательной и хордой, проведенной в точку касания, равен половине дуги, стягиваемой хордой.
∠LQP=∪PQ/2
Центральный угол равен дуге, на которую опирается.
∠PBQ=∪PQ
∠ABQ=∠PBQ/2 =∪PQ/2 =∠LQP
∠PAQ=∪PQ'
∠QAB=∠PAQ/2=∪PQ'/2
Вписанный угол равен половине дуги, на которую опирается.
∠PLQ=∪PQ'/2=∠QAB
△LPQ~△AQB (по двум углам)
△PBQ - равнобедренный, BH - биссектриса, высота, медиана.
PQ⊥AB, PH=QH
AB=21, QA=13, QB=20
По формуле Герона
p= (13+20+21)/2 =27
S(AQB)= √(p(p-a)(p-b)(p-c)) =√(27*14*7*6) =3*3*7*2 =126
S(AQB)=AB*QH/2 <=> 126=21*QH/2 <=> QH=12
PQ=2QH =24
k=PQ/QB =24/20 =1,2
Площади подобных треугольников относятся как квадрат коэффициента подобия.
S(LPQ)= S(AQB)*k^2 =126*1,44 =181,44