Две окружности внешне касаются друг друга в точке a. общая внешняя касательная касается первой окружности в точке b, второй окружности в точке c. прямая ba пересекает вторую окружность в точке d, при этом ab=5, ad=4. найти: а)длину ac б)радиус окружностей
BD-гипотенуза , CA высота опущенная на гипотенузе.
Известно AC² =AB*AD ⇒AC =√(5*4) =2√5 .
Из ΔCAD по теореме Пифагора: CD =√(AC² +AD²) =√(20 +25) =3√5.
CD =2R₂⇒ R₂ =CD/2 = 3√5 / 2.
Аналогично продолжая CD до точки E пересечения с первой окружности можно определить радиус первой окружности _R₁.
---
Или BC =2√R₁*R₂.⇔BC² =4*R₁*R₂.⇔BA²+AC² =4*R₁*R₂⇔
4²+20 =4R₁*3√5 / 2⇒R₁ =6/√5 = 6√5 / 5 .