В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Алёнаум1
Алёнаум1
07.03.2020 03:17 •  Геометрия

Две окружности внешне касаются друг друга в точке a. общая внешняя касательная касается первой окружности в точке b, второй окружности в точке c. прямая ba пересекает вторую окружность в точке d, при этом ab=5, ad=4. найти: а)длину ac б)радиус окружностей

Показать ответ
Ответ:
Polina6002
Polina6002
03.10.2020 06:30
Легко можно показать , что ∠BAC =90°. Соединяем точка D с вершиной C треугольника ABC.  ∠CAD =∠90° ⇒CD диаметр окружности описанной около треугольника  CAD.  DC⊥BC (BC касательная ; радиус ⊥ касательной в точке касания ). В треугольнике BCD  BC и CD катеты ,
BD-гипотенуза , CA высота опущенная на гипотенузе.
Известно AC² =AB*AD  ⇒AC  =√(5*4) =2√5 .
Из ΔCAD по теореме Пифагора:  CD =√(AC² +AD²) =√(20 +25) =3√5.
CD  =2R₂⇒ R₂ =CD/2 = 3√5 / 2.
Аналогично продолжая CD до  точки E пересечения с первой окружности можно определить радиус первой окружности _R₁.
---
Или BC =2√R₁*R₂.⇔BC² =4*R₁*R₂.⇔BA²+AC² =4*R₁*R₂⇔
4²+20 =4R₁*3√5 / 2⇒R₁ =6/√5 = 6√5 / 5 .
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота