две плоскости параллельны между собой. из точки
m, не лежащей ни в одной из этих плоскостей, ни
между плоскостями, проведены две прямые,
пересекающие эти плоскости соответственно в
точкаха, и а2, в1 и в,. известно, что ма, = 3 см,
bab2 = 9 см, а, а = mb1. найдите ma2 и mb2.
!
с дано/найти/решение
9.
<MBA = 120° => <CBA = 180-120 = 60°.
<CBA = 60° => <A = 90-60 = 30°.
Теорема о 30-градусном угле такова: катет, противолежащий углу 30-градусов в прямоугольном треугольнике — равен половине гипотенузы.
Тоесть: BC = AB/2.
У нас есть 2 условия: BC = AB/2; BC+AB = 36.
Составим из этих условий систему уравнений, с переменными: BC = x; AB = y.
Вывод: AB = 24; BC = 12.
10.
Так как все стороны равны, то треугольник — равносторонний, тоесть каждый из внутренних углов равен: 180/3 = 60°.
MP == PK = MK/2 = 13/2 = 6.5.
PK = 6.5(гипотенуза)
<K = 60° ⇒ <RPK = 90-60 = 30°.
По теорема о 30-градусном угле: RK = PK/2 = 6.5/2 = 3.25.
RK = 3.25; NK = 13 => NR = 13-3.25 = 9.75.
Вывод: NR = 9.75.
Відповідь:
1)так(да); 2)ні(нет); 3)так(да); 4)ні(нет).
Пояснення:
1)так, тому що в колі до центра з кожної точки одна й та сама відстань(так, потому что в кругу к центру с каждой точки одно и то же расстояние)
2)ні, пряма має бескінечну кількісьть семетрій(прямая имеет бесконечное число осей симметрии)
3)так кожна вісь семетрична(верно, каждая ось симметрии любого правильного многоугольника с нечетным числом сторон проходит через вершину и середину противоположной стороны.)
4)ні, центр симетрії квадрата є точка перетинаються діагональю.(центр симметрии квадрата является точка пересечения диагоналей.)