ё
В треугольнике MNK: MN = NK, MK = 10. Площадь равна 60. Найдите: А) Высоту проведённую к основанию; Б) Медиану NL; В) Радиус вписанной окружности; Г) Радиус описанной окружности; Е) Точка Е лежит на NМ , F лежит на NK, точки P, J лежат на MK, EP перпендикулярна MK, EP параллельна FJ. ME:EN = NF:FK = 5:8, EF пересекает NL в точке S. Найти: ES:SF и SPEFJ. Д) Найти отрезки на которые делит биссектриса треугольника сторону NK.
Решение
sin (pi/2+t)-cos(pi-t)+tg(pi-t)+ctg(5pi/2-t) = cost + cost - tgt + tgt =2cost
Объяснение:
sin (π/2 + t) - cos (π - t) + tg (π - t) + ctg (5π/2 - t). Для упрощения данного выражения используем формулы приведения. По формулам приведения: sin (π/2 + t) = cos t; cos (π - t) = – cos t; tg (π - t) = – tg t; ctg (5π/2 - t) = tg t. Таким образом, мы пришли к выражению: cos t - (– cos t) + (– tg t) + tg t = (раскроем скобки, если перед скобками стоит знак минус "-", то знак слагаемого в скобках необходимо поменять на противоположный) = cos t + cos t - tg t + tg t = (- tg t и tg t взаимно уничтожаются) = 2cos t. ответ: sin (π/2 + t) - cos (π - t) + tg (π - t) + ctg (5π/2 - t) = 2cos t.
0,2
Объяснение:
ΔOAB - прямоугольный, <BOA = 45°, ⇒ <ABO = 90° - 45° = 45°, ⇒ ΔOAB - равнобедренный, ⇒ OA = OB.
Пусть AB = x, тогда AD = x = CD, т.к. ABCD - квадрат.
Построим отрезок OC, OC - радиус по построению, т.к. О - центр окружности, а точка C лежит на окружности, ⇒ OC = 1.
Рассмотрим прямоугольный ΔODC: OD = OA + AD = x + x = 2x, CD = x, тогда по теореме Пифагора OC² = OD² + CD² , получаем уравнение:
1² = (2x)² + x²
1 = 4x² + x²
5x² = 1
x² = 1/5 = 0,2
- сторона квадрата, тогда площадь квадрата x² = 0,2