В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
tatblin
tatblin
12.04.2023 13:09 •  Геометрия

Edu.skysmart.ru Skysmart Класс
Укажи верные утверждения.
1 Если сумма противолежащих углов четырёхугольника равна 180°, то его
можно вписать в окружность.
2 Для вписанного в окружность четырёхугольника произведение
диагоналей равно сумме произведений противолежащих сторон.
3 Если сумма противолежащих углов четырёхугольника меньше 180.
то его можно вписать в окружность.

Показать ответ
Ответ:
ruzanayvazyan
ruzanayvazyan
18.01.2024 19:59
Добрый день! Давайте разберем каждое утверждение по отдельности:

1. Если сумма противолежащих углов четырёхугольника равна 180°, то его можно вписать в окружность.

Ответ: Верно.

Обоснование: Углы, которые лежат напротив друг друга, называются противолежащими углами. Для четырехугольника верно утверждение, что если сумма его противолежащих углов равна 180°, то этот четырехугольник можно вписать в окружность. В случае, если условие выполняется, то существует окружность, проходящая через все вершины четырехугольника.

Решение: Для доказательства этого утверждения вы можете использовать свойства и теорему о центральном угле и его вписанном угле. Если сумма всех противолежащих углов равна 180°, то каждый из углов является его вписанным углом, и значит, все эти углы опираются на дугу окружности, то есть четырехугольник можно вписать в окружность.

2. Для вписанного в окружность четырёхугольника произведение диагоналей равно сумме произведений противолежащих сторон.

Ответ: Не верно.

Обоснование: Для вписанного в окружность четырехугольника справедливо следующее утверждение: произведение диагоналей равно сумме произведений противолежащих сторон. Это утверждение не имеет обратного значения, т.е. его можно применять только в одну сторону - от вписанного четырехугольника к определенным свойствам его сторон и диагоналей.

Решение: Для доказательства этого утверждения можно использовать теорему Пифагора и свойства вписанных углов и центральных углов. Однако, обратное утверждение, что "произведение диагоналей равно сумме произведений противолежащих сторон" - неверно.

3. Если сумма противолежащих углов четырёхугольника меньше 180°, то его можно вписать в окружность.

Ответ: Не верно.

Обоснование: Если сумма противолежащих углов четырехугольника меньше 180°, то его нельзя вписать в окружность. Чтобы четырехугольник можно было вписать в окружность, необходимо и достаточно, чтобы сумма противолежащих углов была равна 180°.

Решение: Для опровержения этого утверждения можно привести пример четырехугольника с суммой противолежащих углов меньше 180°, который нельзя вписать в окружность. Например, прямоугольник со всеми углами прямыми и суммой углов равной 360° - такой четырехугольник не может быть вписан в окружность, так как его углы в сумме больше 180°.

Надеюсь, что мой ответ был подробным и понятным для вас. Если у вас возникнут еще вопросы, не стесняйтесь задавать их! Я всегда готов помочь.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота