1. Через прямую и не лежащую на ней точку можно провести плоскость, притом только одну. Доказательство: 1) Рассмотрим прямую a и точку A, которая не находится на этой прямой. 2) На прямой a выберем точки B и C. 3) Так как все 3 точки не находятся на одной прямой, из второй аксиомы следует, что через точки A, B, C и можно провести одну единственную плоскостьα. 4) Точки прямой a, B и C, лежат на плоскостиα, поэтому из третьей аксиомы следует, что плоскость проходит через прямую a и, конечно, через точку A.
Сделаем рисунок. Рассмотрим треугольник NOK Это равнобедренный прямоугольный треугольник ( NO=KO=R=12 см) Его углы при основании NK равны по 45° NK=OK:sin (45°)=12:{(√2):2}=24:√2=24*√2):(√2*√2)=12√2 см ( полезно помнить, что гипотеуза равнобедренного прямоугольного треугольника всегда равна катету, умноженному на √2)
MN можно найти по т. косинусов. Но можно обойтись и без нее. Разделим равнобедренный треугольник MON ( его боковые стороны - два радиуса) высотой к основанию MN на два равных прямоугольных треугольника и найдем половину MN. 0,5 MN=NO*cos (30°)=(12*√3):2=6√3 см MN=2*6√3=12√3 см
1) Рассмотрим прямую a и точку A, которая не находится на этой прямой.
2) На прямой a выберем точки B и C.
3) Так как все 3 точки не находятся на одной прямой, из второй аксиомы следует, что через точки A, B, C и можно провести одну единственную плоскостьα.
4) Точки прямой a, B и C, лежат на плоскостиα, поэтому из третьей аксиомы следует, что плоскость проходит через прямую a и, конечно, через точку A.
Рассмотрим треугольник NOK
Это равнобедренный прямоугольный треугольник ( NO=KO=R=12 см)
Его углы при основании NK равны по 45°
NK=OK:sin (45°)=12:{(√2):2}=24:√2=24*√2):(√2*√2)=12√2 см
( полезно помнить, что гипотеуза равнобедренного прямоугольного треугольника всегда равна катету, умноженному на √2)
MN можно найти по т. косинусов. Но можно обойтись и без нее.
Разделим равнобедренный треугольник MON ( его боковые стороны - два радиуса) высотой к основанию MN на два равных прямоугольных треугольника и найдем половину MN.
0,5 MN=NO*cos (30°)=(12*√3):2=6√3 см
MN=2*6√3=12√3 см