-Длина отрезка ОВ равна длине отрезка ОС как радиусы окружности.
ОВ = ОС = 4 см.
-Радиусы ОВ и ОС проведены к точкам касания В и С касательных АВ и АС, тогда радиусы ОВ и ОС перпендикулярны касательным АВ и АС, а тогда треугольники АОС и АОВ прямоугольные.
-Касательные АС и АВ проведены из одной точки А, тогда, по свойству касательных, АВ = АС.
-В прямоугольных треугольниках АОВ и АОС гипотенуза АО общая, катет ОВ = ОС, тогда треугольники АОВ и АОС равны по катету и гипотенузе.
-Длина отрезка ОВ равна длине отрезка ОС как радиусы окружности.
ОВ = ОС = 4 см.
-Радиусы ОВ и ОС проведены к точкам касания В и С касательных АВ и АС, тогда радиусы ОВ и ОС перпендикулярны касательным АВ и АС, а тогда треугольники АОС и АОВ прямоугольные.
-Касательные АС и АВ проведены из одной точки А, тогда, по свойству касательных, АВ = АС.
-В прямоугольных треугольниках АОВ и АОС гипотенуза АО общая, катет ОВ = ОС, тогда треугольники АОВ и АОС равны по катету и гипотенузе.
Тогда угол ОАВ = ОАС = ВАС / 2 = 56 / 2 = 280.
ответ:280
Диагонали ромба делят его на 4 равных прямоугольных треугольника,катеты которых равны половине диагоналей.Обозначим диагонали через.3х и 4х.Тогда катеты прямоугольных треугольников равны.3х/2=1,5х и 4х/2=2х.По теореме Пифагора находим гипотенузу треугольника,то есть сторону ромба: а^2=(1,5х)^2+(2х)^2=2,24x^2+4x^2=6,25x^2; а=2,5х
Перемитр ромба равен 4а=200.Отсюда а=200/4=50.
Поэтому 2,5х=50.Отсюда х=50/2,5=500/25=20.
1,5х=1,5*20=30
2х=2*20=40
Площадь ровна 4 площади равных прямоугольных треугольников,т.е.
S=4*1/2*30*40=2*1200=2400 см^2=24 дм^2
ответ: S=24 дм^2