В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
anisa2004god
anisa2004god
23.04.2021 16:29 •  Геометрия

Если длины двух векторов а и b равны |а|=2, |b|=5, а угол между ними равен 45°, найдите скалярное произведение этих векторов

Показать ответ
Ответ:
supergirll9
supergirll9
18.01.2024 10:45
Хорошо, давайте рассмотрим этот вопрос шаг за шагом.

Скалярное произведение векторов можно найти, используя формулу:

a·b = |a|·|b|·cos(θ),

где |a| и |b| - длины векторов a и b соответственно, а θ - угол между ними.

У нас дано, что |a| = 2, |b| = 5 и θ = 45°.

Давайте подставим значения в формулу и найдем скалярное произведение:

a·b = 2·5·cos(45°).

Сначала вычислим cos(45°). Значение этого угла можно найти в таблице значений тригонометрических функций или с помощью калькулятора. Значение cos(45°) равно √2/2 или примерно 0.7071.

Теперь подставим это значение в формулу:

a·b = 2·5·0.7071.

Вычислим произведение:

a·b = 10·0.7071.

Умножим числа:

a·b ≈ 7.071.

Таким образом, скалярное произведение векторов a и b равно примерно 7.071.

Надеюсь, ответ был понятен! Если у вас еще есть вопросы или что-то еще непонятно, пожалуйста, скажите.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота