1. Центром окружности является точка пересечения биссектрис треугольника, продлим AO и ОС до точек Н и С, тогда АН и СЕ - биссектрисы треугольника ABC;
2. По свойствам биссектрисы следует, что она делит углы треугольника пополам, то есть AH делит угол BAC на равные углы BAH = HAC = 20°, а биссектриса CE делит угол BCA на равные углы BCE = ECA = 25°;
3. Рассмотрим треугольник AOC: сумма углов треугольника 180°, тогда угол О = 180° - (HAC + ECA) = 180-45=135°;
2. По свойствам биссектрисы следует, что она делит углы треугольника пополам, то есть AH делит угол BAC на равные углы BAH = HAC = 20°, а биссектриса CE делит угол BCA на равные углы BCE = ECA = 25°;
3. Рассмотрим треугольник AOC: сумма углов треугольника 180°, тогда угол О = 180° - (HAC + ECA) = 180-45=135°;
4. Найдём больший угол АОС, который равняется 360°-меньший угол АОС = 360-135 = 235°;
5. Рассмотрим четырёхугольник АОС. Сумма углов четырехугольника равна 360°, угол BAH = 20°, угол ECB = 25°, тогда угол ABC = 360°-(ECB+BAH+AOC) = 360°-(45°+235°)= 80°;
ответ: угол ABC = 80°.
Объяснение:
АО и СО биссектрисы. угол А=20*2=40, угол С 25*2=50, угол В=180-(40+50)=90.
угол АВС=90°.