В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
9827816
9827816
09.02.2021 04:23 •  Геометрия

Если угол при вершине на 51° меньше угла при основании,
то в равнобедренном треугольнике угол при основании равен

Показать ответ
Ответ:
poilkee
poilkee
15.05.2022 14:17
<A+<KMC=180
Сумма углов в четырехугольнике равна 360,следовательно <C+<AKM=180
Если суммы противоположных углов равны,то вокруг четырехугольника можно описать окружность.
<AKC=<AMC-опираются на одну дугу АС
<KCM=<KAM-опираются на одну дугу KM
<AOK=<COM-вертикальные,значит дуга АК равна дуге МС
Следовательно <MAC=<KCA
Значит <A=<C и <K=<M
Отсюда ABCD равнобедренная трапеция,основания параллельны.
ΔВАС тоже равнобедренный и АВ=АС
Следовательно <BKM=<BAC,<BMK=<BCA-соответственные
Тогда ΔBCA∞ΔKBM
Отсюда KM/AC=BK/BC
0,0(0 оценок)
Ответ:
AirinMandarin
AirinMandarin
08.05.2020 15:49

1-й признак подобия треугольников

( подобие треугольников по двум углам)

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

2-й признак подобия треугольников

( подобие треугольников по двум сторонам и углу между ними)

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие  треугольники подобны.

3-й признак подобия треугольников

( подобие треугольников по трём сторонам)

Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.

Есть еще 4-й признак подобия треугольников —

( подобие треугольников по двум сторонам и наибольшему углу)

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а наибольший угол одного равен наибольшему углу другого, то такие треугольники подобны.

Доказав, что треугольники подобны, можно использовать свойства подобных треугольников.

Для доказательства подобия прямоугольных треугольников используют другие признаки. Их мы запишем в следующий раз.

Подобие правильных и подобие равнобедренных треугольников рассмотрим позже.

Признаки подобия треугольников широко используются при решении задач как в курсе планиметрии, так и в курсе стереометрии. Например, на основании подобия прямоугольных треугольников доказывается свойство биссектрисы треугольника.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота