обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
Секущая ВС , окружность с центром О радиус = 9, окружность с центром О1 радиус=3, АС=хорде в малой окружности=5, соединяем А иС с центром О1, треугольник АО1С равнобедренный О1А=О1С=радиус=3, проводим высоту О1К = медиане, АК=СК=2,5
соединяем хорду ВА с центром О, треугольник ВОА равнобедренный ОА=ОВ=радиус=9, проводим высоту=медиане ОН на ВА, ВН=АН
соединяем центры О и О1, треугольники АНО и АО1К подобны как прямоугольные треугольники по острому углу угол ОАН=углуО1АК как вертикальные
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см
Секущая ВС , окружность с центром О радиус = 9, окружность с центром О1 радиус=3, АС=хорде в малой окружности=5, соединяем А иС с центром О1, треугольник АО1С равнобедренный О1А=О1С=радиус=3, проводим высоту О1К = медиане, АК=СК=2,5
соединяем хорду ВА с центром О, треугольник ВОА равнобедренный ОА=ОВ=радиус=9, проводим высоту=медиане ОН на ВА, ВН=АН
соединяем центры О и О1, треугольники АНО и АО1К подобны как прямоугольные треугольники по острому углу угол ОАН=углуО1АК как вертикальные
АО1/АК=АО/АН, 3/2,5 = 9/АН, АН=9 х 2,5 /3 =7,5
АВ =2 х АН = 2 х 7,5 =15