И тут я понял, что скорее всего вам нужно найти сторону MN через равнобедренность треугольника (скорее всего тему косинусов вы еще не проходили), поэтому напишу второе решение:
Докажем равнобедренность треугольника
КутК=180-(КутN+КутМ)
180-(20+80)=80
Так как углу углы при основе одинаковые, то треугольник равнобедренный и из этого выплывает что МК=MN=10
средневековье. после падения александрии большинство работ древнегреческих были рассеяны или утрачены.за последние 300 лет доказательная была существенно расширена, а по своим и степени общности результатов она стала заметно отличаться от элементарной (т.е. , изложенной в началах). французский ж.дезарг (1593-1662) в связи с развитием учения о перспективе занялся исследованием свойств фигур в зависимости от их проекций. тем самым он заложил основу проективной , которая изучает те свойства фигур, которые остаются неизменными при различных проекциях. в 19 в. это направление получило существенное развитие. проективная , конические сечения и новая треугольников и окружностей составили содержание современной т.н. чистой .
Напишу для первого
За т.синусов
MN MK
=
sinK sinN
Найдем кут K
КутК=180-(КутN+КутМ)
180-(20+80)=80
sinK = 0.984
sinN = 0.984
MN = (МК x sinK):sinN
MN = (10 x 0.984):0.984 = 10
И тут я понял, что скорее всего вам нужно найти сторону MN через равнобедренность треугольника (скорее всего тему косинусов вы еще не проходили), поэтому напишу второе решение:
Докажем равнобедренность треугольника
КутК=180-(КутN+КутМ)
180-(20+80)=80
Так как углу углы при основе одинаковые, то треугольник равнобедренный и из этого выплывает что МК=MN=10
ответ:
средневековье. после падения александрии большинство работ древнегреческих были рассеяны или утрачены.за последние 300 лет доказательная была существенно расширена, а по своим и степени общности результатов она стала заметно отличаться от элементарной (т.е. , изложенной в началах). французский ж.дезарг (1593-1662) в связи с развитием учения о перспективе занялся исследованием свойств фигур в зависимости от их проекций. тем самым он заложил основу проективной , которая изучает те свойства фигур, которые остаются неизменными при различных проекциях. в 19 в. это направление получило существенное развитие. проективная , конические сечения и новая треугольников и окружностей составили содержание современной т.н. чистой .