Есть ли у кого доступ к разбору (ссылки на youtube видео)? школа interneturok, месячные по и (январь, февраль, март) 8 класс. если нет месячных , то буду сильно и за обычные. p. s. необязательно ссылки, если есть решения, то буду рад и им
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
task/21175083 Даны векторы: a = (1; 2) и b = (-2 ; 3)
Найдите значение выражения:
* * * 2a= (2;4) ; -3b =(6 ; -9); (-1/2)a = (-1/2 ; -1) ; (-1/3)b =(2/3 ; -1) ; |a| =√(1²+2²) =√5 ; | b| =√ ( (-2)²+3²) =√13 ; a*b = 1*(-2) + 2*3 = 4 ; a+b =(-1 ; 5 ) ; a - b =(3; -1 ) * * *
4 ) b(a+b) = b*a + b*b = 1*(-2)+2*3 + (-2)*-2) + (3*3) =4 +13 = 17
* * * b*b =|b|*|b|* cos(b^b) =| b |²* 1 =| b |² ( b )² = | b |² * * *
5 ) ( a + b)² = a² +2a*b + b² = |a|² +2a*b + | b |² =(√5)²+2*4+(√13)²=26
* * * ( a + b)² =(-1)² + 5² = 26 * * *
6 ) ( a - b)² = a² - 2a*b + b² = |a|² -2a*b + | b |² =(√5)²-2*4+(√13)²= 10
* * * ( a - b)² =3² + (-1)² = 10 * * *
7 ) ( a + b)(a - b) = a² - b² =(√5)²- (√13)²= 5 - 13 = -8
* * * ( a + b)(a - b) =(-1)*3 ; 5*(-1) = - 8 * * *
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).