Треугольники АВС и СЕD равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
АС=CD;BC=CE; по условию задачи
Углы АСВ и ЕСD равны между собой,как вертикальные
Равенство треугольников доказано,следовательно соответствующие углы и стороны треугольников тоже равны
Задание 2
Треугольники АВС и АСD равны между собой по первому принципу равенства треугольников
АВ=АD;Углы ВАС и САD равны между собой;
АС-общая сторона
Равенство треугольников доказано,и естественно,равны соответствующие стороны и углы
Любые две из трех прямых, соединяющих середины отрезков AB и CD; AC и BD; AD и BC могут быть:
а) параллельны одной из этих прямых.
Через две параллельные прямые можно провести плоскость, притом только одну.
б) пересекаться:
Через две пересекающиеся прямые можно провести плоскость, притом только одну.
В рисунке приложения даны некоторые из получающихся пар параллельных и пересекающихся прямых:
а) pd и mn как средние линии треугольников АСD и BCD параллельны AD; kp и no параллельны основанию АС треугольников АDC и АВС.
б) km и mn, mn и no пересекаются.
ответ:Задание 1
Треугольники АВС и СЕD равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
АС=CD;BC=CE; по условию задачи
Углы АСВ и ЕСD равны между собой,как вертикальные
Равенство треугольников доказано,следовательно соответствующие углы и стороны треугольников тоже равны
Задание 2
Треугольники АВС и АСD равны между собой по первому принципу равенства треугольников
АВ=АD;Углы ВАС и САD равны между собой;
АС-общая сторона
Равенство треугольников доказано,и естественно,равны соответствующие стороны и углы
Объяснение: