ЭТО 8-ОЙ КЛАСС
1)сторона AD прямоугольника АВСD равна 8 см,диагональ АС образует с этой стороной угол в 60°, Найти: а) вторую сторону б)площадь прямоугольника .
2) Дано: sin a 3/4,найти cos a,tg a.
3)в равнобедренной трапеции меньшее основание равно 4см,боковая сторона 6 см. А один из углов равен 120°. Найдите площадь трапециии.
4) Найдите градусную меру угла
ромба , если его диагонали равны 4см и 4√3 см
30° и 70°
Объяснение:
Обозначим угол за Х.
Возможны 2 варианта:
1) Вторые стороны этих углов лежат по разные стороны относительно общего луча
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен их сумме:
Х = 50 + 20 = 70°
2) Вторые стороны этих углов лежат по одну и ту же сторону относительно общего луча.
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен разности 50° и 20°:
Х = 50 - 20 = 30°
З.Ы.: Возможен еще и третий вариант!
Если мы рассматриваем эти углы в пространстве (3-мерном), а не на плоскости, то не-общие стороны этих двух углов могут образовывать друг с другом, в принципе, любой угол - но! - в пределах, ограниченных между 30° и 70°
Если заданы уравнения параллельных плоскостей Ax + By + Cz + D1 = 0 и Ax + By + Cz + D2 = 0, то расстояние между плоскостями можно найти, используя следующую формулу
d = |D2 - D1|
√(A² + B² + C²) .
Для этого уравнение второй плоскости надо привести к одинаковым коэффициентам с первой плоскостью.
5x-3y+z+3=0 и 5x-3y+z+3,5=0
d = |3-3.5|/√(25+9+1) = 0.5/√35 ≈ 0,08452.
Одинаковые расстояния от плоскостей 5x-3y+z+3=0 и 5x-3y+z+3,5=0 равны половине найденной величины. Тогда коэффициент D в уравнении срединной плоскости равен:
D = D1 + (0,08452/2)*√35 = 3 + 0,25 = 3,25.
ответ: 5x-3y+z+3,25=0.
Можно было просто найти среднее значении между D1 и D2 = (3+3,5)/2 = 3,25.