ЭТО ОЧЕНЬ ВАЖНО
2. Апофема правильной треугольной пирамиды равна 2см и наклонена к плоскости основания под углом 300. Найдите высоту пирамиды.
3. Найдите боковую поверхность прямоугольного параллелепипеда, если стороны основания 6 см и 8 см, а его диагональ наклонена к плоскости основания под углом 45°.
4. Радиус окружности, описанной около основании правильной четырехугольной пирамиды, равен см, а апофема – 10 см. Вычислите полную поверхность пирамиды.
( с черчежами
Найдем сторону этого квадтара (ребро при основании)
АВ = √18 = 3√2 см
ВД1 - диагональ призмы.
Найдем ВД - диагональ основания
ВД = 3√2 * √2 = 6 см
Так как диагональ ВД1 наклонена к плоскости основания по углом 45, то треуг. ВВ1Д1 прямоугольный и равнобедренный. Высота призмы ВВ1 = ВД = 6 см.
Площадь боковой поверхности цилиндра, описаного около призмы равна произведению длины окружности в основании на высоту цилиндра.
Высота цилиндра равна высоте призмы, т.е. 6 см.
Диаметром окружности является диагональ основания призмы ВД.
S (боковое) = П * 6 * 6 = 36*П см.
Эта задача совершенно элементарная.
В самом деле, если из точки Н на В1С опустить перпендикуляр НМ, то НМ = CD1/2 = 3, и треугольник SHM - прямоугольный равнобедренный, поэтому искомый угол равен 45°