Фигуру начертить тоже нужно
1)Из точки О к плоскости α проведены перпендикуляр и наклонная. Вычислите угол между наклонной и плоскостью, если известно, что длины перпендикуляра и проекции наклонной на плоскость равны 3 см??
2)
На рисунке 8 треугольник АСВ прямоугольный (угол С
прямой), . Вычислите двугранный угол между гранями (АВС) и (МCВ), если МА = 3 см, АВ =2 см, ВС = 1см
Точка М не лежит на отрезке SO, т.к. такое сечение является треугольником с вершиной в точке S.
Точка М не лежит в плоскости основания пирамиды, т.к. через прямую и точку, которая не лежит на ней, можно провести только одну плоскость (теорема) ⇒ точка М отмечена на боковом ребре. Проводим плоскость α через точку М и отрезок PQ.
(ОФФТОП - без разницы на каком боковом ребре, возьмем для удобства SD)
Согласно теореме, через точку (М), лежащую вне прямой *b* (которой принадлежит отрезок PQ) можно провести прямую, параллельную этой прямой, и к тому же только одну. Через точку М проводим прямую *с*, параллельную PQ. Прямая *с* и боковое ребро SC пересекаются в точке N.
PQ II MN и PQ II CD ⇒ СD II MN т.к. Две прямые, параллельные третьей прямой, параллельные между собой (теорема)
Боковая грань SCD - равнобедренный треугольник с равными углами при основании ⇒ MNCD - равнобедренная трапеция.
Треугольники MDQ и NCP равны по двум сторонам и углу между ними:
MD = NC (как боковые стороны равнобедренной трапеции)
QD = PC (по условию)
∠MDQ = ∠NCP (как углы при основании равных равнобедренных треугольников)
⇒ MQ = NC
Четыреухгольник, у которого 2 стороны параллельны, а две другие стороны не параллельны и равны, является равнобедренной трапецией.
Дано: тр. ABC и тр. A1B1C1 - подобны, AB=8см, BC=16см, AC=20см, P1=55см
тр. ABC и A1B1C1, подобны, значит:
AB/A1B1=BC/B1C1=AC/A1C1=P/P1=k, где k - коэффицент подобия.
P1=55;
P=8+16+20=44
значит k=P/P1=44/55=4/5
ищем стороны:
A1B1=5*AB/4=5*8/4=10см
B1C1=5*BC/4=20см
A1C1=5*AC/4=25см
значит наименьшая сторона тр. A1B1C1 -
A1B1=10см
ответ: 10см
2)
Дано: тр. ABC, AB=5см ,BC=8см, уг. B=60°
Найти: R=?
находим сторону AC по теореме косинусов:
AC^2=5^2+8^2-2*5*8*cos(B)
AC^2=25+64-2*40*1/2
AC^2=89-40
AC^2=49
AC=7см
искать R будем по теореме синусов:
AC/sin(B)=2R;
sin(B)=sin(60°)=корень(3)/2
R=AC/2sin(B)=7/кор(3)=7кор(3)/3
ответ: 7кор(3)/3