1-a - основание столба, b - верхушка столба (= "фонарь"), c - основание дерева, d - верхушка дерева, e - конец тени. cd=1м, ac = 8ш; ce=4ш⇒ae=12ш. из подобия треугольников abe и cde⇒ ab/cd=ae/ce; ab= 3м 2-треугольник авс - прямоугольный. докажем это с применением теоремы пифагора: 41²=40²+9² 1681=1600+81 значит, ас - гипотенуза. в прямоугольном треугольнике центр окружности находится посередине гипотенузы, следовательно, радиус окружности равен 41: 2=20,5 см. ответ: 20,5 см. 3-1)вс^2=4^2+3^2=25 bc=5 2)bc^2=ac*hb 5^2=x*3 25=3x x=25/3 3)по теореме пифагора ас^2+5^2=(25/3)^2 ac^2=625-225/9 ac^2=400/9 ac=20/3 4-опустим из вершины равнобедренного треугольника высоту, которая по известной теореме является медианой и биссектрисой. тогда из получившихся прямоугольных треугольников найдем, что sin(α/2) = (x/2)/b = x/(2b), где x - это длина искомого основания. теперь выразим икс. x = 2b*sin(α/2). 5-опускаем перпендикуляр bd на сторону ac. проекция ab на ac - это ad= ab cos a; проекция bc на ac - это cd= bc cos c. из теоремы синусов ab/sinc=bc/sina=ac/sin(a+c) ab=ac sinc/sin(a+c) bc=ac sina/sin (a+c) следовательно ad=ac sinc cosa/sin(a+c) cd=ac sina cosc/sin(a+c)
∠CDE составляет одну часть, ∠ADE - 8 таких частей, всего 9 частей.
∠CDE = 90° : 9 = 10°
Сумма острых углов прямоугольного треугольника 90°, тогда из ΔCDE:
∠DCE = 90° - ∠CDE = 90° - 10° = 80°
Диагонали прямоугольника равны и точкой пересечения делятся пополам, тогда ΔCOD равнобедренный (CO = OD), значит углы при его основании равны:
∠OCD = ∠ODC = 80°.
В ΔOCD находим третий угол:
∠COD = 180° - (∠OCD + ∠ODC) = 180° - 160° = 20° - угол между диагоналями.
Объяснение:
Подпишись на меня в ютубе мой канал. LIXORADKA 43. Буду тебя там ждать)