Геометрія 7 клас іть Дано пряму і дві точку а поза нею. Знайдіть на цій прямій точку, рівновіддалену від цих двох точок. Скільки розв'язків може мати задача?
Эту задачу можно решить многими эквивалентными но (как ни удивительно) - самый простой и наглядный координатный.
Пусть есть три взаимно перпендикулярные оси - как обычно, OX, OY, OX, О - начало координат. Если отметить точки на осях на расстоянии 8 от О, то есть точки А (8, 0, 0) В (0, 8, 0) и С (0, 0, 8), то АВ = ВС = АС = 8*√2, и АВСО и есть заданная в задаче пирамида.
Теперь надо построить шар, проходящий через все 4 точки.
Я еще более усложню задачу :))) и буду строить шар, который проходит не только через эти точки АВСО, но и еще через точки D(0, 8, 8) E (8, 0, 8) F(8, 8,0) и G (8, 8, 8). Такой шар существует, поскольку OABCDEFG - просто куб со стороной 8.
Ясно, что центр шара находится в центре куба, то есть в точке О1 (4, 4, 4), и радиус шара равен длине отрезка ОО1, то есть √(4^2 + 4^2 +4^2) = 4*√3; это ответ :)
Конечно, то же самое можно сделать без введения системы координат. Просто - так наглядно.
"Минимальное" решение выглядит так
Заданная пирамида отсекается от куба со стороной 8 плоскостью, проходящей через 3 вершины трех ребер, имеющих общую вершину (то есть исходящих из одной вершины). Поэтому шар, описанный вокруг куба, будет и шаром, описанным вокруг пирамиды. Диаметр шара равен большой диагонали куба, то есть 8*√3; а радиус в 2 раза меньше. Всё.
ответ: 4см, 8 см.
Объяснение:
Пусть SO - перпендикуляр к плоскости прямоугольника.
SA = SB = SC = SD по условию.
Равные наклонные, проведенные из одной точки, имеют равные проекции, значит
ОА = ОВ = ОС = OD.
Тогда точка О - центр окружности, описанной около прямоугольника ABCD, т.е. точка пересечения его диагоналей.
SO = 4 см, SA = 6 см.
Из прямоугольного треугольника SOA по теореме Пифагора:
ОА = √(SA² - SO²) = √(36 - 16) = √20 = 2√5 cм
АС = 2ОА = 4√5 см
Пусть АВ = х, тогда ВС = х + 4.
Из прямоугольного треугольника АВС по теореме Пифагора составим уравнение:
АВ² + ВС² = АС²
x² + (x + 4)² = (4√5)²
x² + x² + 8x + 16 = 80
2x² + 8x - 64 = 0
x² + 4x - 32 = 0
По теореме, обратной теореме Виета:
х₁ = - 8 - не подходит по смыслу задачи,
х₂ = 4
АВ = 4 см
ВС = 4 + 4 = 8 см
Эту задачу можно решить многими эквивалентными но (как ни удивительно) - самый простой и наглядный координатный.
Пусть есть три взаимно перпендикулярные оси - как обычно, OX, OY, OX, О - начало координат. Если отметить точки на осях на расстоянии 8 от О, то есть точки А (8, 0, 0) В (0, 8, 0) и С (0, 0, 8), то АВ = ВС = АС = 8*√2, и АВСО и есть заданная в задаче пирамида.
Теперь надо построить шар, проходящий через все 4 точки.
Я еще более усложню задачу :))) и буду строить шар, который проходит не только через эти точки АВСО, но и еще через точки D(0, 8, 8) E (8, 0, 8) F(8, 8,0) и G (8, 8, 8). Такой шар существует, поскольку OABCDEFG - просто куб со стороной 8.
Ясно, что центр шара находится в центре куба, то есть в точке О1 (4, 4, 4), и радиус шара равен длине отрезка ОО1, то есть √(4^2 + 4^2 +4^2) = 4*√3; это ответ :)
Конечно, то же самое можно сделать без введения системы координат. Просто - так наглядно.
"Минимальное" решение выглядит так
Заданная пирамида отсекается от куба со стороной 8 плоскостью, проходящей через 3 вершины трех ребер, имеющих общую вершину (то есть исходящих из одной вершины). Поэтому шар, описанный вокруг куба, будет и шаром, описанным вокруг пирамиды. Диаметр шара равен большой диагонали куба, то есть 8*√3; а радиус в 2 раза меньше. Всё.