ГЕОМЕТРИЯ 10 КЛАСС ВЕКТОРЫ В параллелепипеде ABCDA1B1C1D1 точки М и N является серединами ребер AB и A1D1 . Разложите, если это возможно, вектор СМ по векторам АВ и АD
Прямоугольный параллелепипед – это параллелепипед, все грани которого являются прямоугольниками. Другими словами, это прямая призма, основания которой – прямоугольники. (эти определения эквивалентны).
тогда :
1.
противоположные грани равны между собой;
2.
боковые ребра перпендикулярны основаниям, то есть являются высотами;
3.
как следствие, формула для объема принимает вид: V=abc, где a, b, c – три различных боковых ребра.
▸ Диагональ прямоугольного параллелепипеда – это отрезок, соединяющий две противоположные (не лежащие в одной грани) вершины. 1) Все диагонали равны, пересекаются в одной точке и делятся ею пополам; 2) Диагональ d можно найти по формуле: d2=a2+b2+c2.
Прямоугольный параллелепипед – это параллелепипед, все грани которого являются прямоугольниками. Другими словами, это прямая призма, основания которой – прямоугольники. (эти определения эквивалентны).
тогда :
1.противоположные грани равны между собой;
2.боковые ребра перпендикулярны основаниям, то есть являются высотами;
3.как следствие, формула для объема принимает вид: V=abc, где a, b, c – три различных боковых ребра.
▸ Диагональ прямоугольного параллелепипеда – это отрезок, соединяющий две противоположные (не лежащие в одной грани) вершины. 1) Все диагонали равны, пересекаются в одной точке и делятся ею пополам; 2) Диагональ d можно найти по формуле: d2=a2+b2+c2.
Медиана треугольника - отрезок, соединяющий вершину треугольника с серединой противоположной стороны. (рис, 59 а)
Биссектриса треугольника - отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны. (рис. 60 а)
Высота треугольника - перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону. (рис. 61)
Любой треугольник имеет:
· три медианы (рис. 59 б)
· три биссектрисы (рис. 60 б)
· три высоты (рис. 62 а, б, в)
Свойства:
- в любом треугольнике медианы пересекаются в одной точке.
- в любом треугольнике биссектрисы пересекаются в одной точке.
- в любом треугольнике высоты или их продолжения пересекаются в одной точке.