гіпотенуза (позначимо її буквою "c") дорівнює х см: c = x;перший катет (позначимо його буквою "a") дорівнює другий катету ((позначимо його буквою "b"): a = b;
Знайти:
розмір катетів;
Рішення:
У цьому варіанті рішення задачі грунтується на використанні теореми Піфагора. Її застосовують до прямокутного трикутника і основний її варіант звучить, як: "Квадрат гіпотенузи дорівнює сумі квадратів катетів". Так, як катети у нас рівні, то ми можемо позначати обидва катета одним і тим же сиволов: a = b, значить - a = a.
Підставляємо наші умовні позначення в теорему (з урахуванням вищевикладеного): c ^ 2 = a ^ 2 + a ^ 2,Далі максимально спрощуємо формулу: з ^ 2 = 2 * (a ^ 2) - групуємо, з =? 2 * а - підносимо обидві частини рівняння до квадратного кореню, a = c/? 2 - виносимо шукане.підставляючи дане значення гіпотенузи і отримуємо рішення: a = x/? 2
Пусть х -внешний угол правильного многоугольника,тогда х+60° - его внутренний угол. Внешний и внутренний углы - смежные ⇒
их сумма равна 180° по свойству смежных углов, т.е.
х+х+60°=180°,
2х= 180°-60°,
х=120°:2,
х=60°,
х+60°=120°.
Сумма внутренних углов правильного многоугольника равна 180°(n-2). Решим уравнение: 120°n =180°(n-2),
120°n=180°n - 360°,
120°n -180°n= - 360°,
-60°n= - 360°
n= 6. ответ: 6
2) По свойству сторон четырёхугольника, описанного около окружности, сумма боковых сторон равнобедренной трапеции равна сумме оснований, т.е. 20+12= 32, а одна боковая сторона равна 32:2=16. Если из вершин верхнего основания опустить высоты, то они отсекут по бокам 2 треугольника, равных по гипотенузе и катету
( гипотенуза равна 16, а нижний катет равен (20-12):2=4 ).
Из теоремы Пифагора найдем высоту:
h=√(16²-4²)=√(256-16)=√240=4√15.
Значит диаметр вписанной окружности равен 4√15 и r=2√15 .
S круга =πг²= π*(2√15)²=60π=60*3,14=188,4. ответ: 188,4.
Дано:
гіпотенуза (позначимо її буквою "c") дорівнює х см: c = x;перший катет (позначимо його буквою "a") дорівнює другий катету ((позначимо його буквою "b"): a = b;Знайти:
розмір катетів;Рішення:
У цьому варіанті рішення задачі грунтується на використанні теореми Піфагора. Її застосовують до прямокутного трикутника і основний її варіант звучить, як: "Квадрат гіпотенузи дорівнює сумі квадратів катетів". Так, як катети у нас рівні, то ми можемо позначати обидва катета одним і тим же сиволов: a = b, значить - a = a.
Підставляємо наші умовні позначення в теорему (з урахуванням вищевикладеного):c ^ 2 = a ^ 2 + a ^ 2,Далі максимально спрощуємо формулу:
з ^ 2 = 2 * (a ^ 2) - групуємо,
з =? 2 * а - підносимо обидві частини рівняння до квадратного кореню,
a = c/? 2 - виносимо шукане.підставляючи дане значення гіпотенузи і отримуємо рішення:
a = x/? 2
ответ: 1) 6 2)188,4 ( или 60π)
Объяснение:
Пусть х -внешний угол правильного многоугольника,тогда х+60° - его внутренний угол. Внешний и внутренний углы - смежные ⇒
их сумма равна 180° по свойству смежных углов, т.е.
х+х+60°=180°,
2х= 180°-60°,
х=120°:2,
х=60°,
х+60°=120°.
Сумма внутренних углов правильного многоугольника равна 180°(n-2). Решим уравнение: 120°n =180°(n-2),
120°n=180°n - 360°,
120°n -180°n= - 360°,
-60°n= - 360°
n= 6. ответ: 6
2) По свойству сторон четырёхугольника, описанного около окружности, сумма боковых сторон равнобедренной трапеции равна сумме оснований, т.е. 20+12= 32, а одна боковая сторона равна 32:2=16. Если из вершин верхнего основания опустить высоты, то они отсекут по бокам 2 треугольника, равных по гипотенузе и катету
( гипотенуза равна 16, а нижний катет равен (20-12):2=4 ).
Из теоремы Пифагора найдем высоту:
h=√(16²-4²)=√(256-16)=√240=4√15.
Значит диаметр вписанной окружности равен 4√15 и r=2√15 .
S круга =πг²= π*(2√15)²=60π=60*3,14=188,4. ответ: 188,4.