ABC - прямоугольный треугольник, угол С прямой. ABCD - фигура вращения (см. рис.) Напротив катета в 3 см лежит угол в 180-90-30 = 60 градусов. Напротив второго катета лежит угол в 30 градусов. Против большей стороны в треугольнике лежит и больший угол (теорема). Значит, меньший катет лежит напротив угла в 30 градусов. Это катет BC. Фигура, полученная вращением данного треугольника - конус. Радиус основания - катет AC = 3 см. Высота конуса - катет BC. По определению тангенса Объём конуса
P.S. Можно подставить значение "пи" 3,14 и получить численный ответ.
1) В равностороннем треугольнике все углы равны 60 градусам. Высота, проведённая из любой вершины равностороннего треугольника является и биссектрисой, и медианой. Следовательно, высота из любой вершины равностороннего треугольника разбивает его на два прямоугольных треугольника с углами 90 градусов между высотой и основанием, 30 градусов (половина угла, из которого проведена высота) и 60 градусов между основанием и гипотенузой. Например: треугольник АВС - равносторонний. LA = LB = LC = 60градусов ВН - высота треугольника. Найти углы. Решение: Угол АВН = углу СВН = 30 градусов Угол АНВ = углу СНВ = 90 градусов Угол ВАН = углу ВСН = 60 градусов
2) Т.к внешний угол при вершине В = 60 градусам, значит угол В треугольника АВС = 180 - 60 = 120 (градусов) Углы при основании треугольника равны, значит угол А = углу С = (180 - 120) :2= = 30(градусов). Высота ВН в равнобедренном треугольнике является и медианой, и биссектрисой. Следовательно, АН = НС = 37 : 2 = 18,5(см) Тангенс угла 30 градусов = ВН/НС, отсюда ВН = НС* tg 30 ВН = 18,5 * 1/Y3 = 18,5/Y3 ответ: ВН = 18,5/Y3
Напротив катета в 3 см лежит угол в 180-90-30 = 60 градусов. Напротив второго катета лежит угол в 30 градусов. Против большей стороны в треугольнике лежит и больший угол (теорема). Значит, меньший катет лежит напротив угла в 30 градусов. Это катет BC.
Фигура, полученная вращением данного треугольника - конус. Радиус основания - катет AC = 3 см. Высота конуса - катет BC.
По определению тангенса
Объём конуса
P.S. Можно подставить значение "пи" 3,14 и получить численный ответ.
Высота, проведённая из любой вершины равностороннего треугольника является и биссектрисой, и медианой. Следовательно, высота из любой вершины равностороннего треугольника разбивает его на два прямоугольных треугольника с углами 90 градусов между высотой и основанием, 30 градусов (половина угла, из которого проведена высота) и 60 градусов между основанием и гипотенузой.
Например: треугольник АВС - равносторонний. LA = LB = LC = 60градусов
ВН - высота треугольника. Найти углы.
Решение:
Угол АВН = углу СВН = 30 градусов
Угол АНВ = углу СНВ = 90 градусов
Угол ВАН = углу ВСН = 60 градусов
2) Т.к внешний угол при вершине В = 60 градусам, значит угол В треугольника
АВС = 180 - 60 = 120 (градусов)
Углы при основании треугольника равны, значит угол А = углу С = (180 - 120) :2=
= 30(градусов).
Высота ВН в равнобедренном треугольнике является и медианой, и
биссектрисой. Следовательно, АН = НС = 37 : 2 = 18,5(см)
Тангенс угла 30 градусов = ВН/НС, отсюда ВН = НС* tg 30
ВН = 18,5 * 1/Y3 = 18,5/Y3
ответ: ВН = 18,5/Y3