В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
jesussoul
jesussoul
04.07.2020 18:29 •  Геометрия

геометрия 7 класс

документ

Показать ответ
Ответ:
semyonshhuko9
semyonshhuko9
02.12.2021 03:28

0,8 м.

Объяснение:

Треугольники АОА1 и ВОВ1 подобны по признаку: "Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны".

В нашем случае АО/ОВ =А1О/ОВ1 = 2,7/5,4 = 1/2 (стороны пропорциональны),

∠АОА1 = ∠ВОВ1 как вертикальные.

Следовательно, треугольники АОА1 и ВОВ1 подобны с коэффициентом подобия k =1/2.

Высоты А1Н и В1Н1 этих треугольников также относятся с коэффициентом k = 1:2.

В1Н1 = 1,6 м. (дано).  Значит А1Н = 1,6·(1/2) = 0,8 м.


На рисунке изображен рычаг. Короткое плечо имеет длину 2 , 7 м, а длиное плечо - 5 , 4 м. На сколь
0,0(0 оценок)
Ответ:
liliya070
liliya070
15.02.2023 18:58

Так как бис­сек­три­са остро­го угла A пря­мо­уголь­но­го тре­уголь­ни­ка ABC не может быть пер­пен­ди­ку­ляр­на BC, то бис­сек­три­са угла A и се­ре­дин­ный пер­пен­ди­ку­ляр к BC имеют ровно одну общую точку.

Пусть N — се­ре­ди­на BC. Рас­смот­рим окруж­ность, опи­сан­ную около тре­уголь­ни­ка ABC. Пусть се­ре­дин­ный пер­пен­ди­ку­ляр к BC пе­ре­се­ка­ет мень­шую дугу BC в точке L (см. ри­су­нок), тогда точка L яв­ля­ет­ся се­ре­ди­ной этой дуги, ⌣BL = ⌣LC. Но тогда \angle BAL= \angle CAL как впи­сан­ные углы, опи­ра­ю­щи­е­ся на рав­ные дуги, а от­сю­да AL — бис­сек­три­са \angle BAC. Но это озна­ча­ет, что точка L сов­па­да­ет с точ­кой K, то есть с точ­кой пе­ре­се­че­ния се­ре­дин­но­го пер­пен­ди­ку­ля­ра к BC и бис­сек­три­сой \angle BAC. За­ме­тим, что \angle BCL= \angle CBL как впи­сан­ные углы, опи­ра­ю­щи­е­ся на рав­ные дуги.

Пусть \angle BCL= x. Че­ты­рех­уголь­ник ACLB — впи­сан­ный, по­это­му \angle ACL плюс \angle ABL = 180 в сте­пе­ни circ, то есть 40 в сте­пе­ни circ плюс x плюс 90 в сте­пе­ни circ плюс x = 180 в сте­пе­ни circ , от­ку­да x = 25 в сте­пе­ни circ. Так как точки K и L сов­па­да­ют, \angle BCK = \angle BCL = 25 в сте­пе­ни circ.

ответ: 25°.

Раздел кодификатора ФИПИ: Углы в окружностях

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота