Прямой угол меньше тупого угла. Поэтому высота тупоугольного треугольника, проведенная из вершины острого угла, всегда расположена вне самого треугольника и пересекает не саму сторону, к которой проведена, а её продолжение. Об этом важно помнить.
В равнобедренном треугольнике АВС углы при основании АС равны по (180°- ∠АВС):2=(180°-112°):2=34°
АF- биссектриса. Поэтому ∠FAC=∠BAF= ∠ BAC:2=34°:2=17°
Объяснение:
Нужно построить, как на рисунке.там вс основное здесь.
Итак, построим высоты, тогда АВН=100-90=10, угол ВАН=180-90-10=80.
Аналогично с треугольником СМД: Угол МСД=170-90=80, угол СДМ=180-90-80=10 градусов.
Отсюда треугольники ВАН и ДСМ подобны по двум углам
Также ВСМН - прямоугольник (по определению), ВС=НМ, ВН=СМ (высоты).
Из подобия АВ/СД=АН/СМ=4корней5/8корней5=1/2
АН/СМ=1/2 СМ=ВН (высоты), значит АН/ВН=1/2 отсюда 2АН=ВН
АВ^2=АН^2+BH^2. AB^2=(2AH)^2+AH^2
5AH^2=(4корней5)^2
5AH^2=16*5 => AH^2=16, AH=4
BH=2*AH=2*4=8 - это высота, также равна СМ
Точно также поступаем с треугольником СМД. Там ВН/ДМ=1/2, ДМ=2ВН=2СМ
Тогда ДМ=2*8=16
По построению АД=АН+НМ+МД, а НМ=ВС (НМСВ прямоугольник по построению), значит АД-ВС=АН+НМ+МД-НМ=АН+МД=4+16=20
Прямой угол меньше тупого угла. Поэтому высота тупоугольного треугольника, проведенная из вершины острого угла, всегда расположена вне самого треугольника и пересекает не саму сторону, к которой проведена, а её продолжение. Об этом важно помнить.
В равнобедренном треугольнике АВС углы при основании АС равны по (180°- ∠АВС):2=(180°-112°):2=34°
АF- биссектриса. Поэтому ∠FAC=∠BAF= ∠ BAC:2=34°:2=17°
Из суммы углов треугольника
∠BFA=180°-∠BAF-∠ABF=180°-17°-112°=51°
Сумма острых углов прямоугольного треугольника 90° ⇒
∠НАF=90°-51°=39°
Объяснение: