Геометрия 7 класс. Заранее Определите углы прямоугольного треугольника, если один из внешних углов равен 134º.
2. Из вершины А прямоугольного треугольника АВС с прямым углом С проведена биссектриса АК, угол АКВ равен 110º. Найдите внешний угол при вершине В треугольника АВС.
3. В остроугольном треугольнике MNP биссектриса угла М пересекает высоту NK в точке О, причем ОК=9 см. Найдите расстояние от точки О до прямой MN.
Объем цилиндра равен произведению площади его основания на высоту.
V=SH
Все нужные измерения найдем с т. Пифагора.
Точка О - вершина прямого угла равнобедренного прямоугольного треугольника АОВ
с катетами АО=ОВ=2 см
АВ - гипотенуза этого треугольника=диаметру основания и по т.Пифагора равна 2√2, следовательно,
радиус основания цилиндра (2√2):2=√2
СО- половина высоты цилиндра СН и равна радиусу основания, т.к.
ОС - медиана треугольника АОВ и по свойству прямоугольного треугольника равна половине АВ, =>
СО= АС=√2.
Высота цилиндра
СН =СО*2=2√2
V=SH=π(√2)²*2√2=4π√2 см³
Пусть АС=х, тогда АВ=ВС=(20-х): 2
Рассмотрим треугольник АВМ - прямоугольный, угол М прямой:
АВ=(20-х): 2, ВМ=6, АМ=х: 2
По теореме Пифагора: к^2+к^2=г^2:
Подставляем значения сторон:
(х: 2)^2+6^2=((20-х): 2)^2
После возведения в квадрат избавляемся от знаменателей, умножив все члены уравнения на 4, получаем:
х^2+144=400-40х+х^2
Переносим иксы влево, числа - вправо, сокращаем противоположные числа, получаем:
40х=400-144
40х=256
Делим все на 40:
х=6.4
Подставляем икс в значения длин сторон треугольника АВС.
ответ:
АВ=ВС=6.8
АС=6.4