В условии явно не отобразилось √2 при значении диагонали. .
Правильное условие задачи:
Найдите косинус угла между плоскостями квадрата ABCD и равностороннего треугольника ABM, если диагональ квадрата равна 4√2 см и расстояние от точки M до стороны DC равно 5 см.
Решение. (см. рисунок 1)
Диагональ квадрата делит его на два равных прямоугольных треугольника с острым углом 45°. Поэтому сторона квадрата равна АВ=4√2•sin 45°=4 (cм).
Искомый угол - угол между высотой МН правильного треугольника АМН и отрезком КН, проведенными перпендикулярно к середине АВ.
МН= АВ•sin60°=4•√3/2=2√3
Расстояние от точки до прямой - длина отрезка, проведенного из данной точки перпендикулярно к прямой.
По т. о трёх перпендикулярах МК ⊥ - ⇒ это расстояние от М до CD, равное 5 см. По т.косинусов
cos∠MHK=(KM²-KN²+MH²):(-2•KH•MH)
cos∠MHK=(25- 16-12):(-2•4•2√3)=√3/16
* * *
Решение по данному в вопросе условию:
Если диагональ квадрата равна 4 см, то, т.к. она делит квадрат на два равных прямоугольных равнобедренный с острым углом 45°, его сторона равна 4•sin45°=2√2.
Искомый угол - угол между перпендикулярами, проведенными в каждой плоскости к одной точке на стороне АВ. (на линии их пересечения), т.е. это угол между высотой МК треугольника АМВ и отрезком КН, проведенным через середины сторон АВ и СD квадрата, т.к. МК⊥АВ, и НК⊥АВ.
АВ - общая для квадрата и равностороннего треугольника, и
МК=АВsin 60°=2√2•√3/2=√6
Расстояние от точки до прямой - длина отрезка, проведенного из данной точки перпендикулярно к прямой.
Т.к. КН ⊥СD, то по т. о трех перпендикулярах МК⊥CD, ⇒ МК=5.
По т.косинусов из ∆ МКН
cos ∠MKH=(MH²-MK²-KH²)² (- 2MK•KH)
cos ∠MKH=(25-8-6): (-2•2√12)
cos ∠MKH= -11/8√3= - 0,7939 Это косинус тупого угла.
Объяснение:
given, cosA + cosB + cosC = 3/2
=> 2(2cos(A + B)/2 . cos(A - B)/2) + 2cosC = 3
=> 2(2cos(pi/2 -c/2) .cos(A - B)/2 + 2(1 - 2sin^2(A/2)) = 3
=> 4sin(c/2) .cos(A - B)/2 + 2 - 4sin^2(A/2)) = 3
=> 4sin^2(A/2) - 4sin(c/2) .cos(A - B)/2 + 1 = 0
This is a quadratic equation in sinc/2, and it has real roots
Therefore , Descriminant >= 0
=> (-4cos(A - B)/2)^2 - 4*4*1 >= 0
=> (cos(A - B))^2 >= 1
=> cos(A - B) = 1, since cosine of any angle can't be > 1
=> A - B = 0
=> A = B
Similarily we can prove that B = C
Thus A = B = C, triangle is equilateral
В условии явно не отобразилось √2 при значении диагонали. .
Правильное условие задачи:
Найдите косинус угла между плоскостями квадрата ABCD и равностороннего треугольника ABM, если диагональ квадрата равна 4√2 см и расстояние от точки M до стороны DC равно 5 см.
Решение. (см. рисунок 1)
Диагональ квадрата делит его на два равных прямоугольных треугольника с острым углом 45°. Поэтому сторона квадрата равна АВ=4√2•sin 45°=4 (cм).
Искомый угол - угол между высотой МН правильного треугольника АМН и отрезком КН, проведенными перпендикулярно к середине АВ.
МН= АВ•sin60°=4•√3/2=2√3
Расстояние от точки до прямой - длина отрезка, проведенного из данной точки перпендикулярно к прямой.
По т. о трёх перпендикулярах МК ⊥ - ⇒ это расстояние от М до CD, равное 5 см. По т.косинусов
cos∠MHK=(KM²-KN²+MH²):(-2•KH•MH)
cos∠MHK=(25- 16-12):(-2•4•2√3)=√3/16
* * *
Решение по данному в вопросе условию:
Если диагональ квадрата равна 4 см, то, т.к. она делит квадрат на два равных прямоугольных равнобедренный с острым углом 45°, его сторона равна 4•sin45°=2√2.
Искомый угол - угол между перпендикулярами, проведенными в каждой плоскости к одной точке на стороне АВ. (на линии их пересечения), т.е. это угол между высотой МК треугольника АМВ и отрезком КН, проведенным через середины сторон АВ и СD квадрата, т.к. МК⊥АВ, и НК⊥АВ.
АВ - общая для квадрата и равностороннего треугольника, и
МК=АВsin 60°=2√2•√3/2=√6
Расстояние от точки до прямой - длина отрезка, проведенного из данной точки перпендикулярно к прямой.
Т.к. КН ⊥СD, то по т. о трех перпендикулярах МК⊥CD, ⇒ МК=5.
По т.косинусов из ∆ МКН
cos ∠MKH=(MH²-MK²-KH²)² (- 2MK•KH)
cos ∠MKH=(25-8-6): (-2•2√12)
cos ∠MKH= -11/8√3= - 0,7939 Это косинус тупого угла.
По данному решению рисунок в приложении 2.