Докажем,что AK=EM Т.к по условию KM и AE диаметры ,то OK=AO=MO=EO(как радиусы),а углы AOK и MOE равны(как вертикальные)=> Треугольники AOK и MOE равны по двум сторонам и углу между ними=>AK=ME Теперь докажем,что треугольники AOM и KOE равны. Углы AOM и KOE равны(как вертикальные),а ОКЕ=АМО и МАО=ОЕК(как накрест лежащие )=>треугольник АОМ равен треугольнику КОЕ по трём углам=>КЕ=АМ,а угол МКЕ равен углу АМК как накрест лежащие Если не нравится доказательство в начале,то можно доказать аналогично тому,что во второй
Т.к по условию KM и AE диаметры ,то OK=AO=MO=EO(как радиусы),а углы AOK и MOE равны(как вертикальные)=> Треугольники AOK и MOE равны по двум сторонам и углу между ними=>AK=ME
Теперь докажем,что треугольники AOM и KOE равны. Углы AOM и KOE равны(как вертикальные),а ОКЕ=АМО и МАО=ОЕК(как накрест лежащие )=>треугольник АОМ равен треугольнику КОЕ по трём углам=>КЕ=АМ,а угол МКЕ равен углу АМК как накрест лежащие
Если не нравится доказательство в начале,то можно доказать аналогично тому,что во второй
Нужен ответ29788
Школы
Это интересно
Репетиторы
Задать вопрос
Войти

Аноним
Геометрия
30 августа 18:11
Диагонали ромба равны 10 и 12 см. Найдите его площадь и периметр.
ответ или решение2

Горшков Александр
Площадь ромба можно определить как половину произведения диагоналей:
S = 0,5 * d1 * d2 = 0,5 * 10 * 12 = 60 см2.
Рассмотрим прямоугольный треугольник, в котором половины диагоналей ромба - катеты, сторона ромба - гипотенуза. По теореме Пифагора:
a2 = (d1 / 2)2 + (d2 / 2)2 = (10 / 2)2 + (12 / 2)2 = 52 + 62 = 25 + 36 = 61;
Сторона ромба равна a = √61 ≈ 7,81 см.
Периметр ромба равен сумме длин его сторон: Р = 4 * а = 4√61 ≈ 31,24 см.