Любая геометрическая задача сводится к рассмотрению треугольника, либо пары треугольников, так вот: рассмотрим треугольник АСB, он равнобедренный, т.к., угол С = 90*, а угол А = 45*, чтобы найти угол B= 180-(90+45) = 45*, углы при основании равны, треугольник равнобедренный по 1 свойству. Так же мы знаем, что в равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой, по 4 свойству, соответственно, медиана - это линия, которая проведена из вершины к середине противоположной стороны. Зная длину стороны АB = 4, мы можем вычислить AB=AH+HB, 4=2+2, значит отрезок HB=2 см. Зная, что от является катетом равнобедренного треугольника, по 1 свойству, т.к., у нас имеется угол в 90* и один угол в 45*, значит угол B=45*, мы получаем, что CH=HB=2см.
Смотрите рисунок. Нахождение стороны квадрата сводится к нахождению диаметра окружности. О-центр окружности. АК её диаметр. ОМ - перпендикуляр на АВ. АО и ВО - радиусы окружности. Значит ΔВАО - равнобедренный. В таком треугольнике перпендикуляр, опушенный из угла при равных сторонах является, так же и медианой. Значит ВМ = АМ = АВ/2 = 12√3+2 = 6√3 см. <ОАМ = 30 градусов. Значит МО = АО/2. Примем АО= R. Следовательно МО = R/2. Gо теореме Пифагора имеем АМ²+ОМ² = АО². Или (6√3)² +(R/2)² = R². Или 36*3 + R²/4 = R². Приведя к общему знаменателю имеем. 36*12 = 3R². Или 12*12=R². Отсюда R = 12 см. Сторона квадрата, описанного вокруг этой окружности, равна её диаметру = 2R = 2*12 = 24 см.
Ниже рисунок.
Сторона квадрата, описанного вокруг этой окружности, равна её диаметру = 2R = 2*12 = 24 см.