Опустим из концов верхнего основания на нижнее перпендикуляры, получим прямоугольник со сторонами: а=6 см, h. основание "разделено" на отрезки b: х см, 6 см, 19-(6+x). (13-x) см х см -отрезок нижнего основания слева, (13-х) см отрезок нижнего основания справа. 12 см -"левая" боковая сторона, 5 см -"правая" боковая сторона (без разницы какая сколько) по теореме Пифагора: из"левого треугольника" h²=12²-x² из "правого треугольника" h²=5²-(13-x)² 12²-x²=5²-(13-x)² 144-x²=25-169+26x-x² 26x=288. x=144/13 h²=12²-(144/13)² h²=144-144²/169 h²=(144*169-144²)/169 h²=144*(169-144)/169 h=12*5/13, h=60/13 см S=(6+19)*(60/13)/2 S=25*60/26 S=25*30/13 cм² S=750/13 см²
основание "разделено" на отрезки b: х см, 6 см, 19-(6+x). (13-x) см
х см -отрезок нижнего основания слева, (13-х) см отрезок нижнего основания справа. 12 см -"левая" боковая сторона, 5 см -"правая" боковая сторона
(без разницы какая сколько)
по теореме Пифагора: из"левого треугольника" h²=12²-x²
из "правого треугольника" h²=5²-(13-x)²
12²-x²=5²-(13-x)²
144-x²=25-169+26x-x²
26x=288. x=144/13
h²=12²-(144/13)²
h²=144-144²/169
h²=(144*169-144²)/169
h²=144*(169-144)/169
h=12*5/13, h=60/13 см
S=(6+19)*(60/13)/2
S=25*60/26
S=25*30/13 cм²
S=750/13 см²
Наклонная равна 20см. чему равна проекция этой наклонной на плоскость, если
наклонная составляет с плоскостью угол 45 градусов.
L=20 cм, l = 20*cos45 = 20*√2/2 = 10√2 см
Точка А отстоит от плоскости на расстоянии 26 см. Найдите длину наклонной, которая составляет с плоскостью угол 30 градусов .
H=26 см, L=H/sin30 = 2H = 52 см
Дан куб ABCDA1B1C1D1,
1) Выпишите грани, параллельные ребру AA1 - не считая граней в которых лежит АА1, BB1C1C и СС1D1D
2) выпишите рёбра, скрещивающиеся с ребром ВС - А1В1, С1D1
3) выпишите рёбра, перпендикулярные плоскости (ABB1) - BC,B1C1,AD,A1D1
4) выпишите плоскости, перпендикулярные ребру AD - ABB1A1, CDD1C1
Радиусы оснований усечённого конуса равны Здм и 7дм. Образующая - 5дм. Найдите площадь осевого сечения.
Осевое сечение - трапеция с основаниями 6дм и 14 дм, и боковой стороной 5дм
S = h*(6+14)/2 = 10h.
Высоту найдем по теореме Пифагора h^2=5^2-((14-6)/2)^2 = 25-16 = 9, h=3 дм
S = 10*3 = 30 дм^2
Шар пересечён плоскостью на расстоянии Зсм от центра. Найдите площадь сечения, если радиус шара равен 5см.
Радиус сечения найдем из треугольника r^2 = R^2 - h^2 = 5^2-3^2 = 25-9 = 16
r = 4 см. S = пr^2 = 16п см^2
Измерения прямоугольного параллелепипеда равны 8см, 12см, 18см. найдите ребро куба, объём которого равен объёму этого параллелепипеда.
V = abc = 8*12*18 = 1728 см^3
Vкуба = а^3 = 1728, a = 4 ∛18 см