ромба)=4*a a = 128/4=32 S(ромба)= a^2 * sina ___S= 32^2* (корень из 3)/2=16*32* (корень из 3)=512* (корень из 3)
ромба)=4*a a = 128/4=32 S(ромба)= a*h. Опускаем высоту в ромбе. Получаем прямоугольный треугольник с углами 90 градусов, 60, градусов и 30 градусов ( 180-(90+60)=30градусов) Зная теорему, катет лежащий против 30 градусов равен половине гипотенузы, находим катет. 32/2=16 Тогда по теореме Пифагора вычисляем высоту: h= корень из (32^2-16^2)=корень из (1024-256)= корень из 768=16* (корень из 3) S= 32* 16*( корень из 3)= 512* (корень из 3)
S(ромба)= a^2 * sina ___S= 32^2* (корень из 3)/2=16*32* (корень из 3)=512* (корень из 3)
ромба)=4*a a = 128/4=32
S(ромба)= a*h. Опускаем высоту в ромбе. Получаем прямоугольный треугольник с углами 90 градусов, 60, градусов и 30 градусов ( 180-(90+60)=30градусов)
Зная теорему, катет лежащий против 30 градусов равен половине гипотенузы, находим катет. 32/2=16
Тогда по теореме Пифагора вычисляем высоту: h= корень из (32^2-16^2)=корень из (1024-256)= корень из 768=16* (корень из 3)
S= 32* 16*( корень из 3)= 512* (корень из 3)
По-моему, первый гораздо легче
Докажем сначала, что это параллелограмм. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
Пусть точка О1(х;у) середина АС тогда
х=(-6+6)/2=0; у=(1-4)/2=-1,5.
Пусть точка О2(х;у) середина BD тогда
х=(0+0)/2=0; у=(5-8)/2=-1,5.
Значит О1 совпадает с О2 - значит ABCD параллелограмм.
О(0;-1,5) - точки пересечения его диагоналей.
Докажем что это прямоугольник. Если диагонали параллелограмма равны то он прямоугольник.
АС^2=(6+6)^2+(-4-1)^2
АС^2=12^2+(-5)^2
АС^2=144+25
AC^2=169
AC=13
BD^2=(0+0)^2+(-8-5)^2
BD^2=0^2+(-13)^2
BD^2=0+169
BD^2=169
BD=13
AC=BD
ABCD - прямоугольник