Цитата: "Сумма внутренних углов плоского выпуклого n-угольника равна 180°(n-2)". Тогда имеем уравнение: {[180°(n-2)]:n}*5 - {[180°(n-2)]:n}*(n-5) = 270. Это уравнение приводится к квадратному: 2n²-21n+40=0, откуда n1=8, n2=2,5 (не удовлетворяет условию). Итак, ответ: число сторон искомого правильного многоугольника равно 8. Проверка: Один угол восьмиугольника равен 180*6/8 = 135°. Тогда сумма пяти углов равна 135*5=675°, а сумма трех оставшихся углов равна 135*3=405°. Разница равна 675°-405°=270°
Объяснение:
В осевом сечении конуса, являющимся равнобедренным прямоугольным треугольником, нижний катет является радиусом.
А так как этот прямоугольный треугольник является равнобедренным, то его высота, которая является и высотой конуса равна радиусу.
Следовательно площадь треугольника равна: S=a*h/2
в нашем случае S=R*R/2 или:
36=R*R/2
36=R²/2
36*2=R²
78=R²
R=√78=√(36*2)=6√2
Объём конуса находится по формуле:
V=1/3*π*R²h
Нам известен:
R=6√2
h=R=6√2
Отсюда:
V=1/3*3,14*(6√2)² *6√2=1/3*3,14*78*6√2=489,84√2
ответ: V=489,84√2
Можно округлить: V=489,8√2
или: V=490√2
Тогда имеем уравнение: {[180°(n-2)]:n}*5 - {[180°(n-2)]:n}*(n-5) = 270.
Это уравнение приводится к квадратному:
2n²-21n+40=0, откуда n1=8, n2=2,5 (не удовлетворяет условию).
Итак, ответ: число сторон искомого правильного многоугольника равно 8.
Проверка: Один угол восьмиугольника равен 180*6/8 = 135°. Тогда сумма пяти углов равна 135*5=675°, а сумма трех оставшихся углов равна 135*3=405°. Разница равна 675°-405°=270°