Угол между хордой и касательной равен половине градусной меры дуги, стягиваемой этой хордой (свойство), то есть половине градусной меры дуги АВ. На дугу АВ опирается центральный угол АОБ, значит дуга АВ = 120°. Значит угол между касательной и хордой в точке касания равен 120°:2 = 60° ответ: искомый угол равен 60°. Или так: В равнобедренном треугольнике АОВ (стороны ОА и ОВ равны - радиусы) углы при основании равны по (180-120):2=30° (сумма углов треугольника = 180°). Касательная в точке касания перпендикулярна радиусу, значит искомый угол равен 90° - 30° = 60°. ответ: 60°
В прямоугольном треугольнике катет лежащий против угла 30 равен половине гипотенузы => AC - гипотенуза = 12 * 2 = 24.
AC - биссектриса ∠BAC = ∠CAD = 30°
∠ACD = 180° - (30° + 90°) = 60°
Т.к AC диагональ => ∠BCA = 1/2 * 60°= 30°
Проведем высоту BH => BC = HD = 12
ΔABC равнобедренный => BC = AB = 12
∠ABH = 180 - (90 + 60) = 30
В прямоугольном треугольнике катет лежащий против угла 30 равен половине гипотенузы => AH = 12 / 2 = 6.
AD = AH + HD = 6 + 12 = 18
Особенность прямоугольной трапеции в том, что её высота равна стороне, расположенной перпендикулярно двум основаниям. => BH = CD = 12
Площадь трапеции равна произведению полусуммы ее оснований на высоту
S = (a+b)/2 * h
S = (12 + 18) / 2 * 12= 180
На дугу АВ опирается центральный угол АОБ, значит дуга АВ = 120°. Значит угол между касательной и хордой в точке касания равен 120°:2 = 60°
ответ: искомый угол равен 60°.
Или так:
В равнобедренном треугольнике АОВ (стороны ОА и ОВ равны - радиусы) углы при основании равны по (180-120):2=30° (сумма углов треугольника = 180°). Касательная в точке касания перпендикулярна радиусу, значит искомый угол равен 90° - 30° = 60°.
ответ: 60°