В правильной пирамиде высота её проходит в основании через точку пересечения медиан (они же и высоты) Этой точкой медианы делятся в отношении 2:1, считая от вершины треугольника основания. Рассмотрим сечение пирамиды и описанного около неё шара, проходящее через боковое ребро пирамиды. Медиана (высота) основания равна 3*cos 30° = 3*√3/2. В сечении будет прямоугольный треугольник. Один из катетов его - это 2/3 медианы основания. Он равен 3*√3/2*(2*3) = √3. Второй катет - это высота пирамиды. Она равна √3*tg 30° = √3*(1/√3) = 1. Боковое ребро - это гипотенуза в рассматриваемом треугольнике. Оно равно 1 / sin 30° = 1 / (1/2) = 2. Центр шара, как и центр описанной вокруг рассмотренного треугольника окружности, находится на пересечении перпендикуляра к середине бокового ребра и высоты пирамиды. Эта точка будет находиться ниже основания пирамиды. Радиус шара равен 1 / sin 30° = 1 / (1/2) = 2.
1. Основания равнобедренной трапеции равны. - нет
2. Диагональ любого прямоугольника делит его на 2 равных треугольника. - да
3. Две прямые, параллельные третьей прямой, перпендикулярны друг другу. - нет
4. Вертикальные углы равны. - да
5. Если один из двух смежных углов острый, то другой тупой. - да
6. Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны. - нет
7. Диагонали ромба равны. - нет
8. Существует треугольник с углами 47° , 56° и 87° - нет
9. Любой четырехугольник, у которого все углы равны является квадратом. - нет
10. Медиана любого треугольника делит угол пополам - нет
11. Все углы ромба равны. - нет
12. Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны. - нет
13. Площадь квадрата равна произведению двух его смежных сторон. - да
14. Любой четырехугольник, у которого все стороны равны, является ромбом. - да
15. Сумма углов равнобедренного треугольника равна 180 градусам. - да
16. Существует такой четырехугольник, у которого два противолежащих угла равны, а другие два противолежащих угла не равны. - нет
17. Диагонали параллелограмма равны. - нет
18. У любой трапеции боковые стороны равны. - нет
19. В тупоугольном треугольнике все углы тупые. - нет
20. В любом параллелограмме диагонали точкой пересечения делятся пополам. - да
Этой точкой медианы делятся в отношении 2:1, считая от вершины треугольника основания.
Рассмотрим сечение пирамиды и описанного около неё шара, проходящее через боковое ребро пирамиды.
Медиана (высота) основания равна 3*cos 30° = 3*√3/2.
В сечении будет прямоугольный треугольник.
Один из катетов его - это 2/3 медианы основания. Он равен
3*√3/2*(2*3) = √3.
Второй катет - это высота пирамиды. Она равна √3*tg 30° = √3*(1/√3) = 1.
Боковое ребро - это гипотенуза в рассматриваемом треугольнике.
Оно равно 1 / sin 30° = 1 / (1/2) = 2.
Центр шара, как и центр описанной вокруг рассмотренного треугольника окружности, находится на пересечении перпендикуляра к середине бокового ребра и высоты пирамиды.
Эта точка будет находиться ниже основания пирамиды.
Радиус шара равен 1 / sin 30° = 1 / (1/2) = 2.