Grammar ise Fill in the blanks with the words into brackets using 'will' or 'be going to' Janome uponyem
Conan a cho xax, Mchombyx "wille ium «be going tow,
1. Next Saturday we
(attend) an NBA game
2 I think that schools
(not/use) books - they (give) every child a tablet
12)
3. I'm sure that you (find) your lost ning
4. Later 1
(read) a science fiction book on my e-reader.
5. In 2055 robots
(be) our teachers
Markus 16
Перпендикулярным отрезком, проведенным из точки к данному прямой называют перпендикуляром .
Теорема — утверждение, справедливость которого устанавливается путем рассуждения, а сами рассуждения — доказательством теоремы
Условие — это начало теоремы, а заключение — конец теоремы
Теорема о перпендикуляре , проведенным из точки к данной прямой: из точки, не лежащей на данной прямой, можно провести перпендикуляр к этой прямой, и притом только один
Медиана треугольника— это отрезок,соединяющий вершину треугольника с серединой противоположной стороны
Любой треугольник имеет три медианы.
Биссектриса треугодиника — отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны
Любой треугольник имеет три биссектрисы.
Высота треугольника — перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.
Любой треугольник имеет три высоты.
Равнобедренным треугольником называется треугольник, у которого две его стороны равны.
Стороны равнобедренного треугольника называют боковыми сторонами.
Равносторонний треугольник — это треугольник, у которого все стороны равны.
Свойство : все углы равностороннего треугольника равны.
Теорема об углах равнобедренного треугольника: В равнобедренном треугольнике углы при основании равны.
Теорема о биссектрисе равнобедренного треугольника: в равнобедренном треугольнике биссектриса , проведенная к основнованию, является медианой и высотой.
Теорема о равестве треугольников: 1) Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и уголу между ними другого треугольника, то такие треугольники равны.
2) Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
3) Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Окружность— геометрическая фигура, состаящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.
Данная точка — центр окружности.
Радиус — отрезок соединяющий центр окружности с какой либо точкой окружности.
Хорда — отрезок соединяющий две точки окружности
Диаметр — хорда проходящая через центр окружности
Відповідь:
Строятся оба треугольника в общем, одинаково.
Я нарисую в Пайнте примерный ход построения, но извините, длины сторон и величины углов точно нарисовать не получится.
1) Рисуем горизонтальную линию, на ней ставим точку.
2) Втыкаем в точку циркуль и раствором, равным второй стороне
(НЕ той, напротив которой заданный угол, а другой) делаем засечку.
В 1) задаче это будет c = 6, во 2 задаче это a = 3.
3) Из поставленной первой точки рисуем заданный угол, то есть проводим луч под нужным углом к горизонтальной прямой.
4) Из второй точки (из засечки) рисуем дугу, равную второй стороне.
5) Эта дуга пересекается с лучом, нарисованным в 3) пункте.
Получилась третья точка треугольника.
Всё!
У меня на рисунке получилось 2 решения этой задачи.
Слева заданные отрезки и угол, справа само построение.
Пояснення: