Рисуете рисунок. У меня основание AC. По условию 2d=ac, ac=4r. Чтобы найти r, вам нужно приравнять 2 формулы площади треугольника. S=1/2*h*a S=p*r а-сторона треугольника, р-полупериметр. Значит p*r=1/2*h*a Нам нужно все выразить через что-то одно. В данном случае все легко выражается через r. h=100-4r квадрат и все это под корнем (теорема Пифа). a=4r. p=(ab+ac+bc)/2. У нас это (4r+20)/2. Подставляем
(4r+20)/2 * r = 1/2 * 4r * Можно разделить на 4r и умножить на 2 обе части. Слева останется r+5, а справа Возведя в квадрат обе части, вы получите квадратное уравнение с корнями -5 и 3.
Одна из основ трапеции на 12 см больше другой а периметр трапеции равен 52 см (см. рис). Диагональ трапеции делит острый угол пополам. Установите соответствие между отрезком и его длиной
Отрезок:
1. Меньшее основание трапеции
2. Большая основа трапеции
3. Высота трапеции
4. Средняя линия трапеции
Длина:
А) 8 см
Б) 10 см
В) 16 см
Г) 20 см
Д) 22 см
------------
Биссектриса острого угла трапеции отсекает от трапеции равнобедренный треугольник. Если эта биссектриса является и диагональю трапеции, то малое основание трапеции боковой стороне
В условии задания не сказано, что трапеция равнобедренная, но все цифирки даны именно из этого предположения!
Считаем трапецию равнобедренной. Тогда из условия, что одно основание длиннее другого на 12 см получаем
x + x + x + x + 12 = 52
x = 10 см
1. Меньшее основание трапеции
ВС = x = 10 см
2. Большее основание трапеции
АД = х + 12 = 10 + 12 = 22 см
3. Высота находится сложнее
Проекции боковых рёбер на основание равны
АГ = ЕД
ГЕ = 10 см
АД = АГ + ГЕ + ЕД = 2*АГ + 10 = 22
2*АГ = 12
АГ = 6 см
По т. Пифагора
АВ² = АГ² + ВГ²
10² = 6² + ВГ²
100 = 36 + ВГ²
ВГ² = 64
ВГ = 8 см, и это высота
4. Средняя линия трапеции равна половине суммы оснований
(ВС + АД)/2 = (10 + 22)/2 = 16 см
----------------------
Но в условии ошибка, для трапеции с неравными боковыми сторонами всё не так.
Чтобы найти r, вам нужно приравнять 2 формулы площади треугольника.
S=1/2*h*a
S=p*r
а-сторона треугольника, р-полупериметр.
Значит p*r=1/2*h*a
Нам нужно все выразить через что-то одно. В данном случае все легко выражается через r. h=100-4r квадрат и все это под корнем (теорема Пифа). a=4r.
p=(ab+ac+bc)/2. У нас это (4r+20)/2. Подставляем
(4r+20)/2 * r = 1/2 * 4r *
Можно разделить на 4r и умножить на 2 обе части.
Слева останется r+5, а справа
Возведя в квадрат обе части, вы получите квадратное уравнение с корнями -5 и 3.
У меня с украинским не очень, поэтому...
Одна из основ трапеции на 12 см больше другой а периметр трапеции равен 52 см (см. рис). Диагональ трапеции делит острый угол пополам. Установите соответствие между отрезком и его длиной
Отрезок:
1. Меньшее основание трапеции
2. Большая основа трапеции
3. Высота трапеции
4. Средняя линия трапеции
Длина:
А) 8 см
Б) 10 см
В) 16 см
Г) 20 см
Д) 22 см
------------
Биссектриса острого угла трапеции отсекает от трапеции равнобедренный треугольник. Если эта биссектриса является и диагональю трапеции, то малое основание трапеции боковой стороне
В условии задания не сказано, что трапеция равнобедренная, но все цифирки даны именно из этого предположения!
Считаем трапецию равнобедренной. Тогда из условия, что одно основание длиннее другого на 12 см получаем
x + x + x + x + 12 = 52
x = 10 см
1. Меньшее основание трапеции
ВС = x = 10 см
2. Большее основание трапеции
АД = х + 12 = 10 + 12 = 22 см
3. Высота находится сложнее
Проекции боковых рёбер на основание равны
АГ = ЕД
ГЕ = 10 см
АД = АГ + ГЕ + ЕД = 2*АГ + 10 = 22
2*АГ = 12
АГ = 6 см
По т. Пифагора
АВ² = АГ² + ВГ²
10² = 6² + ВГ²
100 = 36 + ВГ²
ВГ² = 64
ВГ = 8 см, и это высота
4. Средняя линия трапеции равна половине суммы оснований
(ВС + АД)/2 = (10 + 22)/2 = 16 см
----------------------
Но в условии ошибка, для трапеции с неравными боковыми сторонами всё не так.